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Abstract

In this thesis, we discuss some aspects of calibrated geometry in manifolds
of exceptional holonomy. Manifolds of exceptional holonomy are Riemannian
manifolds that are endowed with one of the following additional structures:
a torsion-free G2-structure or a torsion-free Spin(7)-structure. G2 manifolds
admit two special families of calibrated, hence volume minimizing, subman-
ifolds: associative 3-folds and coassociative 4-folds. Spin(7) manifolds admit
only one family of calibrated submanifolds: Cayley 4-folds. Understanding
the geometry of such calibrated submanifolds is one of the key challenges in
the study of manifolds with exceptional holonomy.

After recalling some basic notion on calibrated geometry and manifolds of
exceptional holonomy, we define calibrated fibrations, and we prove a rigidity
result for these objects under some linear condition.

Then, we describe the construction of two Cayley fibrations in the Bryant–
Salamon Spin(7) manifold using a cohomogeneity one method. These are the
first explicit examples of Cayley fibrations in a non-flat Spin(7) manifold and
the fibres provide new examples of Cayley submanifolds.

Finally, we study the geometry of calibrated submanifolds in G2 manifolds that
admit T2 × SU(2)-symmetry. We apply our results to C3×S1, to the Bryant–
Salamon manifolds and to the manifolds recently constructed by Foscolo–
Haskins–Nordström, where our analysis gives new large families of T2-invariant
associatives. This is based on joint work with B. Aslan.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Riemannian holonomy and Berger’s list

Given a connected Riemannian n-manifold (Mn, g) and a point x ∈ M , the Levi-Civita
connection induces the group:

Holx(g) := {Pγ ⊂ O(TxM) : γ is a loop based at x},

where Pγ denotes the parallel transport along γ. It is fairly easy to see that such a group
is a Lie group and it is independent from x up to conjugation. Hence, it makes sense
to call it the Riemannian holonomy group of (M, g), Hol(g), and to regard it as a Lie
subgroup of O(n,R), defined up to conjugation.

A natural question that arises is the following:

Question 1.1.1. What are the subgroups of O(n,R) that can appear as the Riemannian
holonomy group of some Riemannian manifold (Mn, g)?

Before approaching Question 1.1.1, we need the following observations. Firstly, it is
sensible to recast Question 1.1.1 assuming Mn to be simply-connected. Indeed, Hol(g)
naturally encodes information on the fundamental group of M , π1(M), as the loops in
the definition of holonomy do not need to be homotopic to the constant path. The formal
way around it is by considering the restricted holonomy group:

Hol0x(g) := {Pγ ⊂ O(TxM) : γ is a loop based at x homotopic to the constant path},

which can be shown to be a normal Lie subgroup of Holx(g) and that coincides with the
identity component of Holx(g). The groups Hol(g),Hol0(g) and π1(M) are related by the
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group homomorphism:

φ : π1(M) → Hol(g)/Hol0(g)

[γ] 󰀁→ Pγ · Hol0(g).

Secondly, it is straightforward to verify that, if (Mn, g) = (M1 × M2, g1 × g2) then,
Hol(g) = Hol(g1) × Hol(g2). More surprisingly, the converse holds locally, i.e., if the
Riemannian holonomy group of (Mn, g) is reducible as a representation on Rn, then, Mn

is locally isometric to a Riemannian product. As we are interested in the "building blocks"
of the holonomy group, we will assume in Question 1.1.1 that (Mn, g) is irreducible, i.e.
that it is not locally isometric to a Riemannian product.

Finally, we will restrict ourselves to Riemannian manifolds which are nonsymmetric,
i.e. that are not locally isometric to a Riemannian symmetric space. The reason is that
the holonomy group of a simply-connected Riemannian symmetric space can be easily
deduced from its structure. Moreover, symmetric spaces were completely classified by
Cartan in [20, 21] (cfr. [13, Chapter 7.H] for a list of this classification).

We refer the reader to [13, 46, 52, 53] for further details on the Riemannian holonomy
group, its properties and the assumptions that we have discussed.

We are now ready to answer Question 1.1.1.

Theorem 1.1.2 (Berger [12]). Let (Mn, g) be a simply-connected, irreducible, nonsym-
metric Riemannian manifold. Then, one of the following is satisfied:

1. (Generic case) Hol(g) = SO(n),

2. (Kähler case) Hol(g) = U(m) ⊂ SO(n), where n = 2m for some m ∈ N ,

3. (Calabi–Yau case) Hol(g) = SU(m) ⊂ SO(n), where n = 2m for some m ∈ N,

4. (Hyperkähler case) Hol(g) = Sp(m) ⊂ SO(n), where n = 4m for some m ∈ N,

5. (Quaternionic Kähler case) Hol(g) = Sp(m) · Sp(1) ⊂ SO(n), where n = 4m for
some m ∈ N,

6. (G2 case) Hol(g) = G2 ⊂ SO(7),

7. (Spin(7) case) Hol(g) = Spin(7) ⊂ SO(8).

Since G2 and Spin(7) do not come in a countable family depending on the dimension of
the Riemannian manifold, these groups are usually referred to as the exceptional holonomy
groups, and will be the central objects of this thesis. Intuitively, the reason behind this
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phenomenon boils down to the octonionic nature of G2 and Spin(7) and the fact that
putting an O-module structure on On is not really a sensible idea, as O is a non-associative
normed division algebra.

Observe that, a priori, not all the groups in Theorem 1.1.2 need to be the Rie-
mannian holonomy of some (M, g). For instance, the original Berger’s list contained
Spin(9) ⊂ SO(16) as well. However, Alekseevskii [4] and Brown–Gray [17] ruled out this
case by showing, independently, that Riemannian manifolds with holonomy Spin(9) need
to be symmetric. All the remaining elements of Berger’s list are attained, i.e. they are
the Riemannian holonomy group of some Riemannian manifold (M, g). For further in-
formation on the Berger’s list and examples with a given holonomy, we direct the reader
to [13, 46, 67] and references therein.

1.1.2 The holonomy principle and calibrated geometry

Assume that (M, g) is a Riemannian manifold with holonomy some given Lie group G.
The definition of Riemannian holonomy group does not necessarily enlighten on how such
condition shapes the geometry of M .

Question 1.1.3. Can we translate the condition on Hol(g) to a more tangible property of
the Riemannian manifold?

The answer to this question is given by the holonomy principle. Roughly speaking, it
says that Hol(g) determines the parallel tensors of M and vice versa.

Proposition 1.1.4 (Holonomy principle). Let (M, g) be a Riemannian manifold and let
E = ⊗kTM ⊗l T ∗M be endowed with the natural connection induced from the Levi-Civita
connection. If S ∈ Γ(E) is such that ∇S ≡ 0, then, Sp is fixed by the natural extension
of the action of Hol(g) on Ep, for every p ∈ M . Conversely, if A ∈ Ep is fixed by the
natural extension of the action of Hol(g), then, there exists a unique S ∈ Γ(E) such that
∇S ≡ 0 and Sp = A.

Corollary 1.1.5. Let (M, g) be a simply-connected, irreducible, nonsymmetric Rieman-
nian manifold and let p ∈ M fixed. If G ⊂ SO(TpM) is the subgroup that fixes Sp for
every parallel tensor S, then, G = Holp(g).

A straightforward consequence of the holonomy principle is that Riemannian mani-
folds with holonomy in the Berger’s list come equipped with parallel (and hence closed)
differential forms, which, up to rescaling, can be assumed to have co-mass 1. Differen-
tial forms satisfying these conditions are calibrations and determine a special family of
volume-minimizing submanifolds: calibrated submanifolds.
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Calibrated geometry was introduced by Harvey and Lawson in their seminal work [37],
where they also highlighted its connection to Riemannian holonomy. We give further
details on calibrated geometry in Section 2.1, where we also sum up the calibrations that
arise in manifolds with special holonomy (cfr. Example 2.1.7).

1.1.3 Exceptional geometries and calibrated submanifolds

We now turn our attention to the exceptional Riemannian holonomy groups G2 and
Spin(7). From Section 1.1.2, one can prove that manifolds with G2 holonomy have a
calibrating 3-form, ϕ, and a calibrating 4-form, ∗ϕ, which is simply the Hodge dual
of ϕ. Submanifolds calibrated by ϕ are called associative submanifolds, while the ones
calibrated by ∗ϕ are called coassociative submanifolds. Manifolds with Spin(7) holonomy
only have one calibrating 4-form, Φ, whose calibrated submanifolds are called Cayleys.

As mentioned in Section 1.1.1, the groups G2 and Spin(7) are attained as the Rieman-
nian holonomy group of some Riemannian manifold. Indeed, Bryant provided the first
incomplete examples in [18], Bryant–Salamon constructed the first complete non-compact
ones in [19] and Joyce settled the compact case in [43–45]. Since then, much effort has
been spent to construct new G2 and Spin(7) manifolds and, now, we have a large variety
of complete manifolds with such holonomy groups (see for instance [9, 10, 14, 23–25, 30–
32, 34, 47, 56] and many more). Of particular interest are the G2 manifolds recently con-
structed by Foscolo–Haskins–Nordström in [32] (cfr. Section 2.2.5). Indeed, this family
extends all the previously known (apart from [31]) complete non-compact examples and
they are explicit up to solving a system of ODEs.

A different story holds for complete calibrated submanifolds, where only a handful
of them are known compared to the number of G2 and Spin(7) manifolds. Here is a
brief description of all the previously known examples. In the local model, R7 and R8,
calibrated submanifolds were constructed by Harvey–Lawson and Lotay assuming coho-
mogeneity one symmetry [37,59,61], by Lotay assuming the submanifold to be ruled [60]
and by Ionel–Karigiannis–Min-Oo assuming the submanifold to be a vector subbundle [42].
The first non-trivial examples of calibrated submanifolds in a non-flat manifold of excep-
tional holonomy were constructed on the Bryant–Salamon manifolds of topology Λ2

−(S
4),

Λ2
−(CP2) and S/−(S

4) by Karigiannis–Min-Oo [50], extending [42] to the non-flat setting.
On the Bryant–Salamon manifolds of topology Λ2

−(X) cohomogeneity one techniques were
used by Kawai [51] and Karigiannis–Lotay [49] to produce coassociative submanifolds. For
what concerns compact manifolds, the only closed calibrated submanifolds are described
in [11, 23, 28, 36, 43–45].
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One of the main goals of this thesis is to produce new examples of calibrated submani-
folds in non-compact manifolds of exceptional holonomy. In particular, we construct large
families of Cayley submanifolds on the Spin(7) Bryant–Salamon manifolds (cfr. Chap-
ter 4) and large families of associative submanifolds on each G2 manifold constructed
by Foscolo–Haskins–Nordström (cfr. Chapter 5). Often, the calibrated submanifolds
that we construct form a calibrated fibration, which is, roughly speaking, a fibre bundle
with calibrated fibres up to a measure zero set (cfr. Definition 3.1.5). These objects
have been widely studied both because of their connection to physics (cfr. Section 1.1.4)
and because one could hope to construct new manifolds with exceptional holonomy from
them [2,8,27,49,57]. In this direction, Donaldson [27] studied coassociative fibrations and
Cayley fibrations under an "adiabatic limit", i.e. when the volume of the fibres is sent to
zero. In Chapter 3, we consider a sort of opposite procedure, i.e. we study coassociative
and Cayley fibrations with some natural linear structure.

1.1.4 Exceptional holonomy in mathematical physics

Apart from being interesting mathematical objects, manifolds with exceptional holonomy
have also drawn the attention of mathematical physicists and are now widely studied by
that community as well.

A first reason for their interest is that a Riemannian manifold, (M, g), with Riemannian
holonomy G2 and Spin(7) (but also SU(m), Sp(m)) needs to have vanishing Ricci tensor
[4], and Ricci-flat manifolds are (positive definite) solutions of Einstein’s field equations
in vacuum, with vanishing cosmological constant. To highlight the importance of this
phenomenon, we remark that all the known examples of Ricci-flat compact nonsymmetric
Riemannian manifolds have holonomy SU(m), Sp(m), G2 or Spin(7). More details on
Ricci-flat manifolds can be found in [13] and references therein.

A second connection between exceptional holonomy and mathematical physics comes
from string theory and the relative generalizations. Roughly speaking, supersymmetric
string theory (M-theory, F-theory) claims that the universe should be a 10-dimensional
(11-dimensional, 12-dimensional) fibre bundle over an Einstein space-time and the fibres
should be compact and very small manifolds with holonomy SU(3) (G2, Spin(7)). This
additional dimensions, parametrizing the manifold with special holonomy, should corre-
spond to the space where "quantum phenomena" occur.

One of the most important conjectures string theorists are interested in is mirror
symmetry. It is outside of the scope of this thesis to give a precise account of this
conjecture. An introduction to string theory and mirror symmetry for "dummies", as
the author claims (but still quite out of reach for me), can be found in [46, Chapter 9].
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What matters is that a geometrical interpretation of mirror symmetry was proposed by
Strominger–Yau–Zaslow in [70] for supersymmetric string theory and, afterwards further
generalized to M-thory and F-theory by Gukov–Yau–Zaslow in [35]. Their idea was to
interpret "mirror phenomena" in terms of calibrated fibrations, as defined in the previous
section. Even though the SYZ conjecture and generalizations have received the tireless
attentions of both mathematicians and physicists (cfr. for instance [1, 3]), it still looks
inaccessible at the moment.

1.2 Overview of the thesis

1.2.1 Chapter 2: calibrated geometry and exceptional holonomy

In Chapter 2, we cover the preliminaries for the rest of the thesis. As a first step, we
recall the definition of calibration, of calibrated (current) submanifold and we prove that
calibrated submanifolds are volume-minimizing in their homology class. Moreover, we
provide the list of calibrated submanifolds that arise in manifolds of special holonomy via
Proposition 1.1.4.

Afterwards we turn our attention to manifolds with holonomy group contained in
G2. Using Corollary 1.1.5, we characterize them as the 7-manifolds admitting a partic-
ular closed and co-closed 3-form, the G2-structure, and we show how it induces a cross
product on the tangent bundle. Then, we turn our attention to associative and coasso-
ciative submanifolds, i.e. the submanifolds calibrated by one of the two characterizing
forms, respectively. After providing some basic properties of these objects, we recall some
machinery of geometric measure theory for currents with symmetry. We conclude our
discussion on G2 manifolds with a brief description of the Bryant–Salamon manifolds of
topology S3 × R4 [19] and of the Foscolo–Haskins–Nordström manifolds [32].

Similarly to the G2 setting, we use Corollary 1.1.5 to characterize manifolds with
holonomy contained in Spin(7) as the 8-manifolds admitting a particular closed 4-form,
the Spin(7)-structure, which induces a triple cross product on the tangent bundle. Sub-
sequently, we give a short introduction to Cayley submanifolds, i.e. the submanifolds
calibrated by the Spin(7)-structure, and we give a concise description of the Spin(7)

Bryant–Salamon manifolds.
We conclude this chapter recalling the theory of multi-moment maps introduced by

Madsen and Swann in [62, 63]. Multi-moment maps are natural extensions of symplectic
geometry’s moment maps to manifolds that possess a generic closed form. The idea is to
take generators of the automorphism group and contract them with the given closed form
to reduce its degree to 1. Now, if the resulting 1-form is exact, it can be integrated to a
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function: a multi-moment map. Since it is not true that for all generators the induced
1-form needs to be exact, Madsen and Swann introduced the notion of kth Lie kernel to
overcome this issue.

1.2.2 Chapter 3: calibrated fibrations and linear calibrated vec-
tor bundles

The first part of Chapter 3 is devoted to the mathematical notion of calibrated fibrations.
The "naive" way to define calibrated fibrations is by assuming that the manifold is a
locally trivial fibre bundle with calibrated fibres. After recalling Baraglia’s nonexistence
result for locally trivial coassociative fibrations [8], we provide a more general definition of
calibrated fibrations (cfr. Definition 3.1.5), which is inspired by the work of Karigiannis–
Lotay [49]. This second definition allows the fibres to be singular and to intersect.

In [27], Donaldson characterized locally trivial coassociative fibrations and Cayley
fibrations (cfr. Proposition 3.1.2 and Proposition 3.1.3) as fibre bundles endowed with
an Ehresmann connection and suitable tensors related by a system of PDEs. He studied
such a system by taking an "adiabatic limit", i.e. letting the size of the fibres approach
zero. Under such a procedure, the system de-couples and can be solved completely. Via a
perturbation argument, he used the solutions of the adiabatic system to obtain solutions
of the original problem.

As a dual approach, if we let the size of the fibres explode, one should obtain in the
limit a locally trivial coassociative (Cayley) fibration with a compatible vector bundle
and G2-structure (Spin(7)-structure). In the remaining part of this chapter we take first
steps towards a classification of these "linear coassociative fibrations" ("linear Cayley
fibrations"). In particular, we show that under some isotropic condition the only lin-
ear coassociative (Cayley) fibrations are deformations of the Bryant–Salamon manifolds
described in Section 2.2.4 and Section 2.3.3 (cfr. Theorem 3.2.6 and Theorem 3.3.5).

1.2.3 Chapter 4: Cayley fibrations in the Bryant–Salamon Spin(7)
manifolds

In Chapter 4, we describe the first explicit examples of Cayley fibrations in a non-flat
Spin(7) manifold: the Bryant–Salamon Spin(7) manifold (S/−(S

4),Φc). This chapter is
based on the author’s paper [71].

The main technique for the construction is a cohomogeneity one method, which reduces
the problem to a system of ODEs in the orbit space. The actions that we consider are the
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3-dimensional subgroups of the automorphism group Aut(M,Φc) ∼= Sp(2) × Sp(1) that
do not sit diagonally in it (cfr. Section 2.3.3.3):

G× IdSp(1) ⊂ Sp(2)× Sp(1), IdSp(2) × Sp(1) ⊂ Sp(2)× Sp(1),

where G is the double lift to Sp(2) ∼= Spin(5) of one of the following subgroups of SO(5):

SO(3)× Id2, Sp(1)× Id1, SO(3) acting irreducibly on R5.

In each section, we deal with one of the aforementioned actions, sarting with IdSp(2)×
Sp(1) in Section 4.1, where the fibration is the natural vector bundle projection: π :

S/−(S
4) → S4.

Section 4.2 is the first non-trivial case, where we consider the action induced from
SO(3) × Id2. The first crucial idea is to parametrize the sphere S4 according with the
splitting R3⊕R2, so that SO(3)× Id2 only acts on the first component. This parametriza-
tion induces a trivialization of the bundle S/−(S

4). After computing how the Sp(1)-action
lifts in this trivialization (Section 4.2.3), we notice that the Hopf fibration map on the
fibres is compatible with the action and, hence, we reparametrize the fibres according to
it. We are then able to find the ODE system for Cayley submanifolds (Section 4.2.7)
after a diagonalizing change of frame (Section 4.2.6). The system of ODEs that we obtain
is well-behaved and can be completely integrated (Proposition 4.2.18). The geometrical
information that we can obtain from the system is derived in Section 2.3.3. In particu-
lar, we deduce that the base space of the fibration is S4 and that the fibres are smooth
complete OCP1(−1)s, smooth complete S3 × R or conically singular R4s. A summary of
all this is given in Theorem 4.2.20 (Theorem 4.2.21 for the conical case).

In Section 4.3 we deal with the action induced from Sp(1) × Id1. As for the pre-
vious case, after appropriate choices of a parametrization (Section 4.3.1, Section 4.3.3,
Section 4.3.4) we are able to find a well-behaved system of ODEs. In this case, it is not
completely integrable, but reduces to a autonomous system on the plane that we can
study via a dynamical system argument. From the ODE system, we deduce that the
fibration is parametrized by S4 and that the fibres are smooth complete S3×R or smooth
complete R4. The geometry of the Cayley fibration is encapsulated in Theorem 4.3.8
(Theorem 4.3.9 for the conical case).

The remaining group is Sp(1) induced from the irreducible action of SO(3) on R5. In
this case, a suitable choice of parametrization is not available, hence, we fail to provide a
Cayley fibration (cfr. Section 4.4 for further details).

For each of these actions we compute the associated multi-moment map. Unfortu-
nately, there is no clear interpretation of these maps in terms of the fibration.
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1.2.4 Chapter 5: calibrated geometry in G2 manifolds with
T2× SU(2)-symmetry

Chapter 5, based on a joint work with B. Aslan, is devoted to G2 manifolds that admit a
cohomogeneity two, structure-preserving T2 × SU(2)-action. Before going into the details
of it, we recall that the Bryant–Salamon manifolds of topology S/(S3) and the complete
manifolds constructed by Foscolo–Haskins–Nordström have the desired symmetry. Hence,
we have a large family of examples falling into this class.

As a first step, we study the geometry of a structure-preserving and cohomogeneity
two T2 × SU(2)-action on a G2 manifold, (M,ϕ). For the sake of clarity, in this section
(and only in this section) we assume that the action is effective. This avoids the technical
problem of passing to suitable quotients. We show that the principal stabilizer of the
T2 × SU(2)-action is trivial and that there are no exceptional orbits, i.e. there are no
points with non-trivial discrete stabilizer. Moreover, the singular part, i.e. the set where
the stabilizer is not trivial, further splits into 4 strata, which are characterized by the
dimension of the stabilizer. Explicitly, we have:

M = MP ∪ S1 ∪ S2 ∪ S3 ∪ S4,

where MP is the principal part and Si are embedded submanifolds characterized by having
i-dimensional T2 × SU(2)-stabilizer at each point. The dimension of S4 is 1, of S3 is 3, of
S2 is 3 and of S1 is 5. We conclude the first section by studying the properties of the multi-
moment maps associated to T2 × SU(2), which are ν (relative to ϕ and T2 ∼= T2 ×IdSU(2)),
θ (relative to ϕ and S1 × S1 ⊂ T2 × SU(2)), µ (relative to ∗ϕ and T2 ×S1 ⊂ T2 × SU(2))
and η (relative to ∗ϕ and IdT2 × SU(2)).

In Section 5.2, we focus on the local characterization of G2 manifolds with T2 × SU(2)-
symmetry. Our analysis is based on Madsen and Swann’s work in the T2-case [62]. There,
they used Hitchin’s flow [41] to locally recover G2 manifolds with T2-symmetry from
a coherently tri-symplectic four-manifold (see Definition 5.2.2) endowed with a suitable
R2-valued 2-form. Since the enhanced SU(2)-symmetry passes to such a four-manifold,
we conclude (Theorem 5.2.9) that G2 manifolds with T2 × SU(2)-symmetry are locally
characterized by two nested system of ODEs (the Hitchin’s flow and the one for coherently
tri-sympliectic four manifolds with SU(2)-symmetry) and a suitable R2-valued two form.
Note that this system can always be locally solved under some real-analyticity condition.

Afterwards, we turn our attention to cohomogeneity one calibrated submanifolds. In
particular, we consider T2 ×IdSU(2)-invariant associatives (Section 5.3), T2 ×S1-invariant
coassociatives and IdT2 × SU(2)-invariant coassociatives (Section 5.4).
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For what concerns finding T2 ×IdSU(2)-invariant associatives, we show that the problem
splits with the aforementioned stratification and that µ is a first integral of the induced
ODE system. As a consequence of this, together with the slice theorem, we prove that
(cfr. Theorem 5.3.5 and Theorem 5.3.9):

• S3 ∪ S4 is an associative submanifold,

• S2 is an associative submanifold,

• S1 admits a T2-invariant submersion F : S1 → S2, with associative fibres,

• T2-invariant associatives project in B := MP/(T2 × SU(2)) to level sets of |µ| and
they can be recovered from such level sets up to an horizontal lift.

Along the way, we show that the aforementioned associatives are all smooth, and we
discuss when they form a calibrated fibration.

It was observed by Madsen and Swann in [64] that T2 ×S1-invariant coassociatives
are the level sets of some components of the multi-moment maps θ and ν. We observe
that these coassociatives project on B to the level sets of ν and, since (µ, |ν|) : B →
R2 is a local diffeomorphism, they form together with the T2-invariant associatives a
local associative/coassociative parametrization of B (Corollary 5.3.10). We conclude our
discussion on T3-invariant associatives by showing that all singular points admit a tangent
cone modelled on the Harvey–Lawson cone times R.

Differently from the other cases, SU(2)-invariant coassociatives only exists when ϕ

vanishes on the orbits of the SU(2)-action and do not correspond to level sets of multi-
moment maps on B. However, we manage to show, using geometric measure theory that
when they exist they are all smooth.

We conclude this chapter applying our results to C3 × S1, the Foscolo–Haskins–
Nordström manifolds and the Bryant–Salamon manifolds of topology S/(S3) (cfr. Sec-
tion 5.5). In addition, we also extend the (possibly twisted) vector subbundle construction
to the Bryant–Salamon manifolds of topology S/(S3).
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Chapter 2

Calibrated geometry and exceptional
holonomy

In this chapter, we provide a brief overview of calibrated geometry, manifolds with Rie-
mannian holonomy group G2, manifolds with Riemannian holonomy group Spin(7) and
their relation.

In particular, we review the first definitions and properties of calibrated submanifolds
and of manifolds with holonomy G2 and Spin(7), together with the examples constructed
by Bryant and Salamon [19] and by Foscolo, Haskins and Nordström [32]. We recall that
G2 and Spin(7) manifolds admit natural calibrations and calibrated submanifolds, called
associatives and coassociatives in the former and Cayleys in the latter [37]. We review
some basic properties of such calibrations and calibrated submanifolds.

Finally, we discuss some generalization of the classical notion of moment maps in
symplectic geometry due to Madsen and Swann [62, 63]. These objects, called multi-
moment maps, will play a crucial role in Chapter 5.

2.1 Calibrated geometry

Let (M, g) be a Riemannian manifold. We recall the definition, due to Harvey and Lawson
[37], of calibrations, calibrated currents and calibrated submanifolds.

Definition 2.1.1. A calibration on (M, g) is a k-form, α, on M such that:

• dα = 0,

• M(α) ≤ 1,

where M(α) := supx∈M{α(X1, . . . , Xk) : Xi ∈ TxM, |Xi| = 1} denotes the co-mass of α.
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Given a calibration on a Rimennian manifold (M, g), there is a special class of currents
and submanifolds that are determined by the calibration. First, we recall the notion of
locally integer rectifiable currents.

Definition 2.1.2. Let Γc(M,ΛkT ∗M) be the space of compactly supported k-forms on
M and let T ∈ (Γc(M,ΛkT ∗M))∗ be an element of its topological dual, i.e. a current.
The current T is said to be locally integer rectifiable if there exists:

1. a sequence of C1 oriented k-submanifolds, Σi;

2. a sequence of pairwise disjoint closed subsets, Ki ⊂ Σi;

3. a sequence of positive integers ki,

such that:

1.
󰁓

i kiHk(Ki ∩ Ω) < ∞, for every Ω compact in M ;

2. T (ω) =
󰁓

i ki
󰁕
Ki

ω for every ω ∈ Γc(M,ΛkT ∗M).

In particular, the support of T is ∪iKi and at each point p ∈ ∪iKi we can define
−→
T (p) ∈

ΛkTpM representing the tangent space of the appropriate Σi.

We are now ready to define the locally integer rectifiable currents that are determined
by the calibration.

Definition 2.1.3. Let (M, g) be a Remannian manifold, and let α be a k-dimensional
calibration on it. A k-dimensional locally integer rectifiable current, T , is calibrated by α

(also called α-current) if 〈αp,
−→
T (p)〉 = 1 for Hk-a.e. point p in the support of T .

Remark 2.1.4. In the smooth setting, a submanifold Σ is calibrated by α if and only if
α
󰀏󰀏
Σ
= volΣ.

One of the main reasons behind our interest in calibrated currents (calibrated sub-
manifolds) is that, if they have finite mass (volume), they are homologically-volume min-
imizing.

Lemma 2.1.5 (Harvey–Lawson [37]). Let (M, g) be a Remannian manifold and let α be
a k-dimensional calibration on it. If T has finite mass and it is calibrated by α, then T is
homologically volume-minimizing, i.e. M(T ) ≤ M(T ′) for every T ′ homologous to T (i.e.
such that T − T ′ = ∂S, for some S compactly supported). Equality holds if and only if T ′

is α-calibrated.
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Proof. Let T ′ and S as in the statement. Then,

M(T ) = T (α) = (T ′ + ∂S)(α) = T ′(α) + S(dα) = T ′(α) ≤ M(T ′),

where we used the definition of calibration and calibrated current in the first equality and
in the last inequality.

More generally, we deduce that calibrated currents (calibrated submanifolds), non-
necessarily with finite mass (volume), are locally volume minimizing.

Lemma 2.1.6. Let (M, g) be a Remannian manifold and let α be a k-dimensional cali-
bration on it. If T is calibrated by α, then it is locally volume minimizing.

Finding examples of calibration is fairly easy, note, for instance, that α ≡ 0 is a
calibration on any Riemannian manifold. However, it is far less trivial to find calibrations
admitting calibrated submanifolds, or, at least, a "large enough" space of calibrated planes
at each point of M . Interesting examples of such calibrations can be found in manifolds
of special holonomy (cfr. Section 1.1.2)

Example 2.1.7. These are the examples of interesting calibrations arising in manifolds
of special holonomy.

• Let (M,ω) be a Kähler manifold. Then, ωk/k! is a calibration for every k and the
calibrated submanifolds are the k-dimensional complex submanifolds.

• Let (M,ω,Ω) be a Calabi–Yau manifold. Then, Re(eiθΩ) is a calibration for every
θ and the calibrated submanifolds are called special Lagrangians of phase θ.

• Let (M,ϕ) be a G2 manifold. Then, ϕ and ∗ϕ are calibrations and the calibrated sub-
manifolds are called associatives and coassociatives, respectively (cfr. Section 2.2).

• Let (M,Φ) be a Spin(7) manifold. Then, Φ is a calibration and the calibrated
submanifolds are called Cayleys (cfr. Section 2.3).

2.2 Holonomy G2

In this section, we recall some basic results concerning G2 manifolds, associative subman-
ifolds and coassociative submanifolds.
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2.2.1 G2 manifolds

The linear model we consider for a G2 manifold is R7 ∼= R3⊕R4 parametrized by (x1, x2, x3)

and (a0, a1, a2, a3), respectively. On R7, we consider the associative 3-form ϕ0:

ϕ0 = dx1 ∧ dx2 ∧ dx3 +
3󰁛

i=1

dxi ∧ Ωi,

where the Ωis are the standard ASD two-forms of R4 endowed with the Euclidean metric,
i.e., Ωi = da0 ∧ dai − daj ∧ dak for (i, j, k) cyclic permuation of (1, 2, 3). The Hodge dual
of ϕ0 in R7 is also of great geometrical interest:

∗ϕ0 = da0 ∧ da1 ∧ da2 ∧ da3 −
3󰁛

i=1

dxj ∧ dxk ∧ Ωi,

where (i, j, k) is again a positive permutation of (1, 2, 3).
Since the stabilizer of ϕ0 is isomorphic to G2, the automorphism group of O, we can

see (R7,ϕ0) as the linear model for manifolds with G2-structure group.

Definition 2.2.1. Let M be a manifold and ϕ a 3-form on M . We say that ϕ is a G2-
structure on M if at each point x ∈ M there exists a linear isomorphism px : R7 → TxM

which identifies ϕ0 with ϕ
󰀏󰀏
x
, i.e., p∗xϕ = ϕ0.

A G2 structure ϕ induces a metric gϕ and an orientation volϕ on M satisfying:

(iu ◦ ϕ) ∧ (iv ◦ ϕ) ∧ ϕ = −6gϕ(u, v) volϕ, (2.2.1)

for all u, v ∈ TxM and all x ∈ M . This makes px an orientation preserving isometry.
From gϕ and volϕ, one can also construct the coassociative 4-form ∗ϕϕ. We remand the
reader to [66] for further details.

Definition 2.2.2. Let M be a manifold and let ϕ be a G2-structure on M . (M,ϕ) is a
G2 manifold if the G2-structure is torsion-free, i.e., ϕ and ∗ϕϕ are closed (or, equivalently,
if ϕ is closed and co-closed).

Note that Fernandez and Gray showed in [29] that ϕ is closed and co-closed if and
only if ϕ is parallel. Hence, by Proposition 1.1.4, (M, gϕ) is a G2 manifold if and only if
Hol(gϕ) ⊆ G2.

Proposition 2.2.3 (Bonan [15], Alekseevsky [4]). Every G2 manifold is Ricci-flat.

The octonionic nature of the tangent space equips the tangent bundle with a natural
cross product.
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Definition 2.2.4. Let (M,ϕ) be a manifold with a G2-structure. The cross product on
the tangent bundle ×ϕ is defined as follows:

×ϕ :TM × TM → TM

(U, V ) → (iV ◦ iUϕ)#,

where # denotes the Riemannian musical isomorphism.

In particular, if U , V , W are vector fields on M , then, U ×ϕ V is characterized by the
following equation:

ϕ(U, V,W ) = gϕ(U ×ϕ V,W ).

2.2.2 Associative and coassociative submanifolds

Given a manifold with a G2-structure, (M,ϕ), it is clear that ϕ and ∗ϕ have co-mass
equal to one. It follows that, if (M,ϕ) is a G2 manifold, then, ϕ and ∗ϕ are calibrations.

Definition 2.2.5. Let F ⊂ (R7,ϕ0) be a 3-dimensional vector subspace. F is an associa-
tive plane if ϕ0

󰀏󰀏
F
= volF . A submanifold L of a G2 manifold (M,ϕ) is associative if it is

calibrated by ϕ, i.e. ϕ
󰀏󰀏
L
= volL.

Definition 2.2.6. Let F ⊂ (R7,ϕ0) be a 4-dimensional vector subspace. F is a coasso-
ciative plane if ∗ϕ0

󰀏󰀏
F
= volF . A submanifold Σ of a G2 manifold (M,ϕ) is coassociative

if it is calibrated by ∗ϕ, i.e. ∗ϕ
󰀏󰀏
Σ
= volΣ.

Remark 2.2.7. Obviously, Σ is associative or coassociative if and only if TpΣ is an as-
sociative or a coassociative plane of (R7,ϕ0) for every x ∈ Σ under the isomorphism
px.

We now state some well-known properties of associative and coassociative planes which
will be useful in the discussion below.

Proposition 2.2.8 (Harvey–Lawson [37]). Let F ⊂ (R7,ϕ0) be a 3-dimensional subspace.
Then, the following are equivalent:

1. F is an associative plane,

2. F⊥ is a coassociative plane,

3. if u, v ∈ F , then, u×ϕ0 v ∈ F ,

4. if u ∈ F and v ∈ F⊥, then, u×ϕ0 v ∈ F⊥,
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5. if u, v ∈ F⊥, then, u×ϕ0 v ∈ F ,

6. if u, v, w ∈ F , then, iw ◦ iv ◦ iu ∗ϕ0 ϕ0 = 0

7. if u, v, w ∈ F⊥, then, iw ◦ iv ◦ iuϕ0 = 0.

Moreover, it follows that for every u, v linearly independent vectors of R7 there exists a
unique associative plane containing them. Analogously, if u, v, w are linearly independent
vectors of R7 such that ϕ0(u, v, w) = 0 there exists a unique coassociative plane containing
them.

It is clear that we can translate this statement to the tangent space (TxM,ϕ
󰀏󰀏
x
) of a

G2 manifold through px. Moreover, one can also obtain the following local existence and
uniqueness theorem.

Theorem 2.2.9 (Local existence and uniqueness; Harvey–Lawson [37]). Let N be a real
analytic submanifold of a G2 manifold (M,ϕ). If N is 2-dimensional, then, there exists
a unique associative real-analytic submanifold L such that N ⊂ L. If N is 3-dimensional
and ϕ

󰀏󰀏
N

≡ 0, then there exists a unique coassociative real-analytic submanifold Σ such
that N ⊂ Σ.

2.2.3 Blow-up of associatives and coassociatives with symmetries

In this subsection, we recall some preliminary results that we will use to study the singu-
larities of associative and coassociative submanifolds with symmetries.

The first result, due to Madsen and Swann, claims that the blow-up of any torsion-free
G2-structure converges to the standard local model.

Theorem 2.2.10 (Madsen–Swann [64]). Let ϕ0 be the standard G2-structure of R7 and
let ϕ be a torsion-free G2-structure on B2(0) ⊂ R7 such that ϕ(0) = ϕ0(0). Then, for
t > 0, the rescaled G2-structure ϕt := t−3λ∗

tϕ is such that ϕ1 = ϕ and we have that
ϕt → ϕ0 as t → 0 on B1(0) in the Ck-norm for every k ≥ 0, where λt(x) := tx for every
x ∈ R7. Moreover, the same holds for the ϕt-induced Riemannian metric gt = t−2λ∗

t g and
dual form (∗ϕ)t = t−4λ∗

t (∗ϕ), where g is the Riemannian metric induced by ϕ and ∗ is
the relative hodge dual.

Moreover, Harvey and Lawson showed that under the blow-up procedure calibrated
currents remain calibrated, and converge to a calibrated tangent cone.
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Theorem 2.2.11 (Harvey–Lawson [37]). If L is a ϕ-calibrated current in (B2(0),ϕ),
then, Lt := (λt−1)\L(= t−1L) is a ϕt-calibrated current in (B2(0),ϕt) for every t ∈ (0, 1].
Moreover, if 0 ∈ supp(L), then, Lt converges in the sense of currents, up to subsequences,
to a ϕ0-calibrated non-empty tangent cone C. The same result holds for ∗ϕ-calibrated
currents.

Proof. Let p ∈ supp(Lt) and let X1, X2, X3 be an oriented orthonormal basis of the
approximate tangent space of Lt at p. Then, tp ∈ supp(L) and X1, X2, X3 is an oriented
orthonormal basis of L at tp, where we identified the approximate tangent spaces of L and
Lt as vector subspaces of R7. Hence, the first part follows from the definition of ϕt. The
remaining is a consequence of the theory of tangent cones for area-minimizing currents
(see [69, Section 7.35]).

A result due to Simon [68, Corollary p. 564], together with Allard’s regularity theorem
(see [69, Chapter 5]), allows us to study the geometry of calibrated currents with mild
singularities.

Theorem 2.2.12. If L is a ϕ-calibrated current in (B2(0),ϕ) of density 1 away from 0
and has a tangent cone C at 0 that is non-singular (i.e. C \ {0} is smooth), then, C is
the unique tangent cone and, in a smaller neighbourhood of 0, L is smooth everywhere
apart from 0, where the singularity is modeled on C. Moreover, if C is also flat, then L

is smooth at 0. The same result holds for ∗ϕ-calibrated currents.

Finally, since we will be interested in G-invariant submanifolds, for some compact Lie
group G acting effectively on M , we study how vector fields behave under blow-up. These
vector fields will be chosen to be the generators of the action.

Proposition 2.2.13. Let X be a vector field on (B2(0),ϕ) such that LXϕ = 0. Then,
the rescaled vector field X t := λ∗

tX = t−1(X ◦ λt) is such that LXtϕt = 0. Moreover, the
same holds for f(t)X t, where f ∈ C∞(R+;R).

Proof. It follows from a straightforward application of Cartan’s formula and λ∗
t (iXϕ) =

iλ∗
tX

λ∗
tϕ.

Since [X t, Y t] = λ∗
t [X, Y ] for every X, Y vector fields, the generators of a G-action

defined for t = 1 will give vector fields satisfying the same equations for every t > 0.
Unfortunately, if we let t go to 0, X t does not necessarily converge. Indeed, if we write

X(x) =
7󰁛

i=1

ai(x)∂i,
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for some functions ai on B2(0), then,

X t(x) = t−1

7󰁛

i=1

ai(tx)∂i,

which does not converge if some ai(0) ∕= 0. However, assuming that X is real-analytic,
we can always find a minimal integer α ≤ 1 such that X̃ t := tαX t converges smoothly to
some non-zero vector field X̃ as t → 0. Clearly, α = 1 if and only if X(0) ∕= 0. Moreover,
if LXtϕt = 0, then Proposition 2.2.13 implies 0 = LX̃tϕt → LX̃ϕ0.

In a similar fashion, given a 1-form ω one can define ωt, ω̃t and ω̃.

Lemma 2.2.14. Given three vector fields X, Y, Z on (B2(0),ϕ) as in Theorem 2.2.10,
then, for t → 0 the following equations hold:

1. 󰁩(iX ◦ iY ϕ)t = iX̃t ◦ iỸ tϕt → iX̃ ◦ iỸ ϕ0,

2. 󰁩(iX ◦ iY ◦ iZ ∗ ϕ)t = iX̃t ◦ iỸ t ◦ iZ̃t ∗ ϕt → iX̃ ◦ iỸ ◦ iZ̃ ∗ ϕ0.

The following lemma shows that if X is a Killing vector field one can choose coordinates
in which α is either 0 or 1.

Lemma 2.2.15. Let X1, . . . Xk be Killing vector fields on (M,ϕ) generated by an auto-
morphic group action G, such that X1, . . . , Xl vanish at p and Xl+1, . . . , Xk do not vanish
at p. Then, we can choose normal coordinates around p, such that:

X̃i = X̃ t
i = Xi if i ≤ l,

X̃i = Xi(0) ∕= 0 if i ≥ l + 1

and ϕ(0) = ϕ0. In particular, this means that the αi relative to X̃ t is zero in the first case
and one in the second.

Proof. When i ≥ l+1, the statement holds in any coordinates and is a direct consequence
of Xi being continuous.

Normal coordinates are defined via the exponential map expp : B󰂃(0) ⊂ TpM → U ⊂
M . Because of the slice theorem, this map is G-equivariant and the stabilizer group Gp,
has Lie algebra which is generated by X1, . . . , Xl. So, in normal coordinates, the vector
fields X1, . . . , Xl generate a linear action on TpM . This means they agree with their first
order approximation and the statement follows. We can use the freedom to choose a
basis of TpM such that ϕ(0) = ϕ0 since GL(7,R) acts transitively on positive 3-forms on
R7.
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We will be interested in the case where the group G is T2 × SU(2), or some discrete
quotient of it. If U1, U2 are the generators of the T2-component and V1, V2, V3 are genera-
tors of the SU(2)-component, then, for every l,m = 1, 2 and all (i, j, k) cyclic permutation
of (1, 2, 3), they satisfy:

[U1, U2] = 0, [Ul, Vm] = 0, [Vi, Vj] = 󰂃ijkVk.

It follows that the vector fields Ũ t
1, Ũ

t
2, Ṽ

t
1 , Ṽ

t
2 , Ṽ

t
3 are such that:

[Ũ t
1, Ũ

t
2] = 0, [Ũ t

l , Ṽ
t
m] = 0, (2.2.2)

[Ṽ t
i , Ṽ

t
j ] = tαi+αj−αk Ṽ t

k , (2.2.3)

where αi is the α defining Ṽ t
i .

2.2.4 The Bryant–Salamon G2 manifold of topology S3 × R4

In this section we describe the Bryant–Salamon G2 manifold of topology S3 × R4 [19].
In their work, Bryant and Salamon constructed a 1-parameter family of torsion-free G2-
structures on the spinor bundle over S3, which is a trivial bundle in this case. The
3-dimensional sphere is endowed with the metric of constant sectional curvature k, which
we can assume to be equal to one up to rescalings. Further details can be found in [19]
and [49].

Remark 2.2.16. The construction that we describe on S3 works on manifolds and orbifolds
with negative constant sectional curvature. However, in these cases, the metric is not
complete or smooth.

2.2.4.1 The spinor bundle over S3

Let S3 be the 3-sphere endowed with the Riemannian metric of constant curvature 1.
Given an oriented orthonormal frame of S3, {e1, e2, e3}, we can construct the dual oriented
orthonormal coframe, {b1, b2, b3}, and the relative Levi-Civita connection matrix:

ρ =

󰀳

󰁃
0 −2ρ3 2ρ2
2ρ3 0 −2ρ1
−2ρ2 2ρ1 0

󰀴

󰁄 ,

which is determined by the first structure equation: db = −ρ ∧ b. In particular, we will
consider e1, e2, e3 to be the left-invariant frame of S3 ∼= Sp(1) such that [ei, ej] = −2ek
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and, hence, dbi = 2bj ∧ bk for (i, j, k) positive permutation of (1, 2, 3). The metric and the
volume form in this frame become:

gS3 = b21 + b22 + b23, volS3 = b1 ∧ b2 ∧ b3,

while the Levi-Civita connection matrix is determined by: ρi = −1
2
bi.

Now, consider S3 × R4 as a trivial vector bundle over S3, and endow it with the
connection induced by the matrix:

ρ =

󰀳

󰁅󰁅󰁃

0 ρ1 ρ2 ρ3
−ρ1 0 −ρ3 ρ2
−ρ2 ρ3 0 −ρ1
−ρ3 −ρ2 ρ1 0

󰀴

󰁆󰁆󰁄 .

Remark 2.2.17. Equivalently, ρ is the spin connection on the spinor bundle S/(S3).

The vertical one forms with respect to this connection are:

ξ0 = da0 + a1ρ1 + a2ρ2 + a3ρ3, ξ1 = da1 − a0ρ1 + a3ρ2 − a2ρ3,

ξ2 = da2 − a3ρ1 − a0ρ2 + a1ρ3, ξ3 = da3 + a2ρ1 − a1ρ2 − a0ρ3,

where (a0, a1, a2, a3) are the coordinates on the fibers. Recall that the horizontal 1-forms
are spanned by {π∗

S3(bi)}, where πS3 : S/(S3) → S3 is the usual bundle projection. As an
abuse of notation, we will omit the pullback symbol.

2.2.4.2 The G2-structure

Now that we recalled the geometry of the vertical and horizontal spaces, we are ready
to define the Bryant–Salamon construction of torsion-free G2-structures on S3 × R4. Let
r2 := a20 + a21 + a22 + a23, which corresponds to the square of the distance from the zero
section, and let

Ω1 = ξ0 ∧ ξ1 − ξ2 ∧ ξ3, Ω2 = ξ0 ∧ ξ2 − ξ3 ∧ ξ1, Ω3 = ξ0 ∧ ξ3 − ξ1 ∧ ξ2,

then, the G2-structures on S/(S3) given by Bryant and Salamon are:

ϕc = f 3 volS3 +fg2
3󰁛

i=1

bi ∧ Ωi,

where f =
√
3(c+r2)

1
3 and g = 2(c+r2)−1/6. The induced metric, the relative coassociative

and volume forms become:

gc = f 2gS3 + g2(ξ20 + ξ21 + ξ22 + ξ23),

∗ϕcϕc = g4ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 − f 2g2
3󰁛

i=1

bj ∧ bk ∧ Ωi,

volc = f 3g4 volS3 ∧ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3.
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As usual, (i, j, k) is a positive permutation of (1, 2, 3).
Setting c = 0 and M0 := S/(S3) \ S3, we obtain a G2 cone (M0,ϕ0), i.e. M0 with the

metric induced by the G2-structure ϕ0 is a Riemannian cone.

Theorem 2.2.18 (Bryant–Salamon [19]). Let (Mc,ϕc) be the spinor bundle of S3 (or the
relative cone) endowed with the Bryant-Salamon G2 structure ϕc, c ≥ 0. Then, dϕc = 0,
d ∗ϕc ϕc = 0 and Hol(Mc, gc) = G2.

Moreover, SU(2)3 ∼= Sp(1)3 acting on S3 × R4 ∼= S3 ×H ⊂ H2 as follows:

(q1, q2, q3) · (x, a) = (q1xq̄3, q2aq̄3),

for (q1, q2, q3) ∈ SU(2)3 and (x, a) ∈ S3 ×H, is structure preserving.

Remark 2.2.19. The functions f and g defined above satisfy the following equations:

˙(f 3) =
3k

4
fg2, ˙(fg2) = 0, ˙(f 2g2) =

k

4
g4, (2.2.4)

for k = 1 and where the dot represents the derivative with respect to r2.
In general, the Bryant–Salamon torsion-free G2-structures on the spinor bundle over

a 3-manifold of constant sectional curvature k are characterized by the forms:

ϕ := f 3b1 ∧ b2 ∧ b3 + fg2
3󰁛

i=1

bi ∧ (ξ0 ∧ ξi − ξj ∧ ξk),

∗ϕ := g4ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 − f 2g2
3󰁛

i=1

bj ∧ bk ∧ (ξ0 ∧ ξi − ξj ∧ ξk),

with f, g satisfying Eq. (2.2.4).

2.2.5 The Foscolo–Haskins–Nordström manifolds

In this section, we provide a brief description of the G2 manifolds constructed by Foscolo,
Haskins and Nordström in [32], which we will refer to FHN manifolds for brevity.

2.2.5.1 The topology of the FHN manifolds

Let (M,ϕ) be a non-compact, simply-connected G2 manifold, with a structure-preserving
SU(2)× SU(2) cohomogeneity-one action. Then, it is well-known that M/ SU(2)× SU(2)

is an open or half-closed interval I, and hence, the cohomogeneity-one structure can be
encoded by a pair of closed subgroups: K0 ⊂ K ⊂ SU(2) × SU(2), which are referred
to as the group diagram of M . In particular, SU(2) × SU(2)/K0 is diffeomorphic to the
principal orbits of the SU(2) × SU(2)-action and corresponds to the interior of I, while
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SU(2)× SU(2)/K is diffeomorphic to the singular orbit and corresponds to the boundary
of I, if it exists.

In the case of our interest, we either have K0 = {1SU(2)×SU(2)} or K0 = Km,n ∩K2,−2,
where m,n are coprime integers and Km,n

∼= U(1)× Zgcd(n,m) is defined by:

Km,n :=
󰀋
(eiθ1 , eiθ2) ∈ T2 : ei(mθ1+nθ2) = 1

󰀌
⊂ SU(2)× SU(2),

where T2 is the maximal torus in SU(2) × SU(2). If m,n are coprime the isomorphism
between Km,n ⊂ SU(2)× SU(2) and U(1) is:

eiθ 󰀁→ (einθ, e−imθ), (2.2.5)

moreover, Km,n∩K2,−2
∼= Z2|m+n|. Up to automorphisms of SU(2)×SU(2), the subgroup

K determining the singular orbit SU(2)× SU(2)/K is one of the following:

∆ SU(2),
󰀋
1SU(2)

󰀌
× SU(2), Km,n,

where ∆ SU(2) denotes the SU(2) sitting diagonally in SU(2) × SU(2). Note that the
singular orbit is diffeomorphic to S3 for the first two cases, and to S2 × S3 for the third
one.

2.2.5.2 The G2-structure

We now describe the G2-structure on the principal part of M , diffeomorphic to (SU(2)×
SU(2))/K0 × Int(I).

Consider on SU(2)× SU(2) the basis {b1, b2, b3, b̃1, b̃2, b̃3} of left-invariant 1-forms sat-
isfying:

dbi = 2bj ∧ bk, db̃i = 2b̃j ∧ b̃k,

and denote by e1, e2, e3, f1, f2, f3 the dual vector fields. On the principal part of M , these
can be explicitly described as follows:

e1(p, q, r) = −(pi, 0, 0), e2(p, q, r) = −(pj, 0, 0), e3(p, q, r) = −(pk, 0, 0),

f1(p, q, r) = −(0, qi, 0), f2(p, q, r) = −(0, qj, 0), f3(p, q, r) = −(0, qk, 0),

where the product is by quaternionic multiplication. Let c1, c2 ∈ R and let a1, a2, a3

be three functions only depending on the interval I. The following closed 3-form on
(SU(2)× SU(2))/K0 × Int(I):

ϕ = −8c1b1 ∧ b2 ∧ b3 − 8c2b̃1 ∧ b̃2 ∧ b̃3 + 4d(a1b1 ∧ b̃1 + a2b2 ∧ b̃2 + a3b3 ∧ b̃3) (2.2.6)

22



is a G2-structure if and only if the following conditions are satisfied:

ȧi > 0, Λ(a1, a2, a3) < 0, 2ȧ1ȧ2ȧ3 =
󰁳

−Λ(a1, a2, a3),

where

Λ(a1, a2, a3) =a41 + a42 + a43 − 2a21a
2
2 − 2a22a

2
3 − 2a23a

2
1 + 4(c1 − c2)a1a2a3+

+ 2c1c2(a
2
1 + a22 + a23) + c21c

2
2.

Furthermore, if K0 = Km,n ∩K2,−2, we require a2 = a3 unless there exists a d ∈ Z such
that (d+ 1)m+ (d− 1)n = 0.

Remark 2.2.20. Under these conditions, the interval I is the arc-length parameter along
a geodesic meeting all the principal orbits orthogonally.

The torsion-free condition becomes the Hamiltonian system associated to the potential:

H(x, y) =
󰁳

−Λ(y1, y2, y3)− 2
√
x1x2x3,

where yi = ai and xi = ȧj ȧk for every (i, j, k) cyclic permutation of (1, 2, 3). If t denotes
the parametrization of I, then, the dual form of ϕ is given by:

∗ϕ =16
3󰁛

i=1

ȧj ȧkbj ∧ b̃j ∧ bk ∧ b̃k+

+
8√
−Λ

dt ∧
󰀕
(2a1a2a3 − c1(a

2
1 + a22 + a23 + c1c2))b1 ∧ b2 ∧ b3

+ (2a1a2a3 + c2(a
2
1 + a22 + a23 + c1c2))b̃1 ∧ b̃2 ∧ b̃3

+
3󰁛

i=1

󰀃
(ai(a

2
i − a2j − a2k + c1c2)− 2c2ajak)bi ∧ b̃j ∧ b̃k

+ (ai(a
2
i − a2j − a2k + c1c2) + 2c1ajak)b̃i ∧ bj ∧ bk

󰀄󰀖
.

(2.2.7)

Enhanced symmetry. We now restrict our discussion to the case where a := a2 = a3

and b := a1. Under this additional condition, the symmetry of (SU(2)×SU(2))/K0×Int(I)
becomes SU(2)×SU(2)×U(1), where the action of (γ1, γ2,λ) ∈ SU(2)×SU(2)×U(1) on
([p, q], t) ∈ (SU(2)× SU(2))/K0 × Int(I) is as follows:

(γ1, γ2,λ) · ([p, q], t) = ([γ1pλ, γ2qλ], t), (2.2.8)

where λ is given by the U(1) ⊂ SU(2) generated by quaternionic multiplication by i.
Under this enhanced symmetry, the form of Λ(a, b) simplifies to:

−Λ(a, b) = 4a2(b− c1)(b+ c2)− (b2 + c1c2)
2,
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and the same holds for the Hamiltonian system, which becomes:

ẋ1 = − Λa(y1, y2)

4
󰁳

−Λ(y1, y2)
, ẋ2 = − Λb(y1, y2)

2
󰁳

−Λ(y1, y2)
,

ẏ1 =
x1x2󰁳
x2
1x2

, ẏ2 =
x2
1󰁳

x2
1x2

,

where y1 = a, y2 = b, x1 = ȧḃ, x2 = ȧ2 and Λa, Λb denote the derivative of Λ(a, b) with
respect to the first or the second component, respectively.

Remark 2.2.21. From −Λ(a, b) > 0, we deduce that a, b− c1, b+ c2 have definite sign, and
hence, ẋ1 has definite sign as well.

Example 2.2.22. The Bryant–Salamon manifolds described in Section 2.2.4 can be seen
as special examples of FHN manifolds such that, for some c > 0:

a1 = a2 = a3 =

√
3

2
r2, c1 = −3

8

√
3c, c2 = 0, K =

󰀋
1SU(2)

󰀌
× SU(2) (2.2.9)

or
a1 = a2 = a3 =

1

6
r3 − 1

3
c3, c1 = −c2 = c3, K = ∆ SU(2),

where r(t) is a reparametrization of t such that dr/dt = 1/2(c + r2)1/6 in the first case
and dr/dt = 1/

√
3
√
1− 8c3r−3 in the second case.

Example 2.2.23. The G2 manifolds predicted by Brandhuber–Gomis–Gubser–Gukov
in [16] (rigourously constructed by Bogoyavlenskaya in [14]) can also be seen as special
examples of FHN manifolds.

2.2.5.3 Extension to the singular orbit and forward completeness

Now, we state under which conditions the G2-structure extends smoothly to the singular
orbit and when it is forward complete.

First, we know from the slice theorem that a neighbourhood of the singular orbit
SU(2)× SU(2)/K is equivariantly diffeomorphic to a small disk bundle of:

(SU(2)× SU(2))×K V,

for some vector space V endowed with a representation of K. We now summarise when
the G2-structure defined in Eq. (2.2.6) extends smoothly to the zero section of such a
bundle (cfr. [32, Proposition 4.1]).

Case 1 (K = ∆ SU(2)). In this case, V = C2 and SU(2) acts in the usual way
on it. The SU(2) × SU(2)-invariant G2-structure defined above extends smoothly to the
zero-section if and only if:
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1. c1 + c2 = 0,

2. the functions {ai} are even and have the following development near 0: ai(t) =

c1 +
1
2
αt2 +O(t4) for some α ∈ R,

3. 8α3 = c1 > 0.

Case 2 (K = {1SU(2)}× SU(2)). As in the previous case, V = C2 and SU(2) acts in the
usual way on it. The G2-structure defined above extends smoothly to the zero-section if
and only if:

1. c2 = 0,

2. the functions {ai} are even and have the following development near 0: ai(t) =
1
2
αit

2 +O(t4) for some αi ∈ R+,

3. 8α1α2α3 = −c1 > 0.

Case 3 (K = Km,n). In this situation, V = R2 and Km,n
∼= U(1) acts on it with

weight 2|m+ n|. The G2-structure defined above extends smoothly to the zero-section if
and only if:

1. mn > 0,

2. c1 = −m2r30 and c2 = n2r30 for some r0 ∈ R \ {0},

3. the function a1 is even and satisfies: a1(0) = mnr30, ä1(0) > 0,

4. the function a2 + a3 is odd and satisfies: ȧ2(0) + ȧ3(0) > 0,

5. we either have a2 = a3 or m = n = ±1; if the a2 and a3 do not coincide, then, their
difference is an even function with |a2(0)− a3(0)| < 2|r0|3.

The forward completeness of the local solutions constructed above is discussed in [32,
Section 6, Section 7] for the case we have the enhanced symmetry SU(2)× SU(2)×U(1).
Moreover, they showed that the complete G2 manifolds they obtain are all the possible
complete G2-manifolds with SU(2)× SU(2)× U(1)-symmetry.

2.3 Holonomy Spin(7)

In this section, we recall some basic results concerning Spin(7) manifolds and Cayley
submanifolds.
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2.3.1 Spin(7) manifolds

The local model is R8 ∼= R4 ⊕R4 with coordinates (x0, ..., x3, a0, ..., a3), and Cayley form:

Φ0 = dx0 ∧ dx1 ∧ dx2 ∧ dx3 + da0 ∧ da1 ∧ da2 ∧ da3 +
3󰁛

i=1

ωi ∧ ηi,

where ωi = dx0 ∧ dxi − dxj ∧ dxk, ηi = da0 ∧ dai − daj ∧ dak and (i, j, k) is a cyclic
permutation of (1, 2, 3). Note that {ωi}3i=1 and {ηi}3i=1 are the standard basis of the
anti-self-dual 2-forms on the two copies of R4.

It is well-known that Spin(7) is isomorphic to the stabilizer of Φ0 in GL(8,R). Hence,
we can see (R8,Φ0) as the linear model for manifolds with Spin(7)-structure group.

Definition 2.3.1. Let M be a manifold and let Φ be a 4-form on M . We say that Φ is
a Spin(7)-structure on M if at each point x ∈ M there exists an oriented isomorphism
px : R8 → TxM which identifies Φ0 with Φ

󰀏󰀏
x
, i.e., p∗xΦ = Φ0.

The Spin(7)-structure on M also induces a Riemannian metric, gΦ, and an orientation,
volΦ, on M . With respect to these structures Φ is self-dual. We remand the reader to [66]
for further details.

Definition 2.3.2. Let M be a manifold and let Φ be a Spin(7)-structure on M . We say
that (M,Φ) is a Spin(7) manifold if the Spin(7)-structure is torsion-free, i.e., dΦ = 0.

Similarly to the G2 case, Bryant [18] showed that Φ is closed if and only if Φ is parallel.
Hence, by Proposition 1.1.4, (M, gΦ) is a Spin(7) manifold if and only if Hol(gΦ) ⊆ Spin(7).

Proposition 2.3.3 (Alekseevsky [4]). Every Spin(7) manifold is Ricci-flat.

The octonionic nature of the tangent space equips the tangent bundle with a natural
triple cross product.

Definition 2.3.4. Let (M,Φ) be a manifold with a Spin(7)-structure. The triple cross
product on the tangent bundle is defined as the musical dual of the following map:

B :TM × TM × TM → T ∗M

(U, V,W ) → iW ◦ iV ◦ iU ◦ Φ.

Explicitely, this is given by:

U × V ×W = B(U, V,W )#

or, equivalently by

Φ(U, V,W,Z) = gΦ(U × V ×W,Z),

where # denotes the Riemannian musical isomorphism and U, V,W,Z are vector fields of
M .
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2.3.2 Cayley submanifolds

Given a manifold with a Spin(7)-structure, (M,Φ), it is clear that Φ have co-mass equal
to one. It follows that, if (M,Φ) is a Spin(7) manifold, then, Φ is a calibration.

Definition 2.3.5. Let F ⊂ (R8,Φ0) be a 4-dimensional vector subspace. F is a Cayley
plane if Φ0

󰀏󰀏
F
= volF . A submanifold L of a Spin(7) manifold (M,Φ) is Cayley if it is

calibrated by Φ, i.e. Φ
󰀏󰀏
L
= volL.

Remark 2.3.6. Obviously, L is Cayley if and only if TpL is a Cayley plane of (R8,Φ0) for
every x ∈ L under the isomorphism px.

We now state some well-known properties of Cayley planes.

Proposition 2.3.7 (Harvey–Lawson [37]). Let F ⊂ (R8,Φ0) be a 4-dimensional subspace.
Then, the following are equivalent:

1. F is a Cayley plane,

2. F⊥ is a Cayley plane,

3. if u, v, w ∈ F , then, u× v × w ∈ F ,

4. if u, v ∈ F and w ∈ F⊥, then, u× v × w ∈ F⊥,

5. if u, v, w ∈ F⊥, then, u× v × w ∈ F⊥,

6. if u, v, w ∈ F and z ∈ F⊥, then, iz ◦ iw ◦ iv ◦ iuΦ0 = 0.

Moreover, it follows that for every u, v, w linearly independent vectors of R8 there exists
a unique Cayley plane containing them.

It is clear that we can translate this statement to the tangent space (TxM,Φ
󰀏󰀏
x
) of

a Spin(7) manifold through px. In particular, one can also obtain the following local
existence and uniqueness theorem.

Theorem 2.3.8 (Local existence and uniqueness; Harvey–Lawson [37]). Let N be a 3-
dimensional real analytic submanifold of a Spin(7) manifold (M,Φ). Then, there exists a
unique Cayley real-analytic submanifold Σ such that N ⊂ Σ.

We now give Karigiannis and Min-Oo characterization of the Cayley condition.
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Proposition 2.3.9 (Karigiannis–Min-Oo [50, Proposition 2.5]). The subspace spanned by
tangent vectors u, v, w, y is a Cayley 4-plane, up to orientation, if and only if the following
form vanishes:

η = π7

󰀃
u
Z ∧B(v, w, y) + v

Z ∧B(w, u, y) + w
Z ∧B(u, v, y) + y

Z ∧B(v, u, w)
󰀄
,

where
π7(u

Z ∧ v
Z
) :=

1

4

󰀃
u
Z ∧ v

Z
+ iu ◦ iv ◦ Φ

󰀄
.

Remark 2.3.10. The reduction of the structure group of M to Spin(7) induces an orthog-
onal decomposition of the space of differential k-forms for every k, which corresponds to
an irreducible representation of Spin(7). In particular, if k = 2, the irreducible represen-
tations of Spin(7) are of dimension 7 and 21. At each point x ∈ M , these representations
induce the decomposition of Λ2(T ∗

xM) into two subspaces, which we denote by Λ2
7 and

Λ2
21, respectively. The map π7 defined in Proposition 2.3.9 is precisely the projection map

from the space of two-forms to Λ2
7. Further details can be found in [66].

2.3.3 The Bryant–Salamon Spin(7)-manifold

In this section we will describe the Spin(7) manifolds constructed by Bryant and Salamon
in [19]. There, they described a 1-parameter family of torsion-free Spin(7)-structures on
M := S/−(S

4), the negative spinor bundle on S4. The 4-dimensional sphere is endowed
with the metric of constant sectional curvature k, which is the unique spin self-dual
Einstein 4-manifold with positive scalar curvature [40]. Without loss of generality, we can
rescale the sphere so that k = 1.

Remark 2.3.11. The Bryant–Salamon construction on S4 also works on spin 4-manifolds
with self-dual Einstein metric, but negative scalar curvature, and on spin orbifolds with
self-dual Einstein metric. However, in these cases, the metric is not complete or smooth.

2.3.3.1 The negative spinor bundle of S4

Let S4 be the 4-sphere endowed with the Riemannian metric of constant sectional cur-
vature 1. As S4 is clearly spin, given PSO(4) frame bundle of S4 we can find the spin
structure PSpin(4) together with the spin representation:

µ := (µ+, µ−) : Sp(1)× Sp(1) ∼= Spin(4) → GL(H)×GL(H),

where µ±(p±)(v) := vp±. Let π̃ : PSpin(4) → PSO(4) be the double cover in the definition of
spin structure, and let π̃n

0 : Spin(n) → SO(n) be the double (universal) covering map for
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all n ≥ 3. The negative spinor bundle over S4 is defined as the associated bundle:

S/−(S
4) := PSpin(4) ×µ− H.

The positive spinor bundle is defined analogously, taking µ+ instead.
Given an oriented local orthonormal frame for S4, {e0, e1, e2, e3}, the real volume

element e0 ·e1 ·e2 ·e3 acts as the identity on the negative spinors and as minus the identity
on the positive ones. Now, let {b0, b1, b2, b3} be the dual coframe of {e0, e1, e2, e3}, let ω̃ the
connection 1-forms relative to the Levi-Civita connection of S4 with respect to the frame
{e0, e1, e2, e3} and let {σ1, σi, σj, σk} a local orthonormal frame for the negative spinor
bundle corresponding to the standard basis of {1, i, j, k} in this trivialization. Hence, we
can define the linear coordinates (a0, a1, a2, a3) which parametrize a point in the fibre as
a0σ1 + a1σi + a2σj + a3σk.

By the properties of the spin connection and the fact we are working on the negative
spinor bundle, we can write:

∇σα = (ρ1µ−(e2 · e3) + ρ2µ−(e3 · e1) + ρ3µ−(e1 · e2)) σα

= (ρ1µ−(i) + ρ2µ−(j) + ρ3µ−(k)) σα,

where 2ρ1 = ω̃3
2−ω̃1

0, 2ρ2 = −ω̃2
0−ω̃3

1 and 2ρ3 = ω̃2
1−ω̃3

0. It is well-known that these are the
connection forms on the bundle of anti-self-dual 2-forms, with respect to the connection
induced by the Levi-Civita connection on S4 and the frame given by Ωi := b0∧bi−bj ∧bk.
As usual, (i, j, k) is a cyclic permutation of (1, 2, 3). The ρis are characterized by:

d

󰀳

󰁃
Ω1

Ω2

Ω3

󰀴

󰁄 = −

󰀳

󰁃
0 −2ρ3 2ρ2
2ρ3 0 −2ρ1
−2ρ2 2ρ1 0

󰀴

󰁄 ∧

󰀳

󰁃
Ω1

Ω2

Ω3

󰀴

󰁄 , (2.3.1)

and the vertical one forms are:

ξ0 = da0 + ρ1a1 + ρ2a2 + ρ3a3, ξ1 = da1 − ρ1a0 − ρ3a2 + ρ2a3,

ξ2 = da2 − ρ2a0 + ρ3a1 − ρ1a3, ξ3 = da3 − ρ3a0 − ρ2a1 + ρ1a2.
(2.3.2)

Recall that the horizontal 1-forms are spanned by {π∗
S4(bi)}4i=1, where πS4 is the usual

bundle projection. As above we will omit the pull-back as an abuse of notation.

Remark 2.3.12. A detailed account of spin geometry can be found in [54]. Observe that,
there, the definition of positive and negative spinors is interchanged. We opted to stay
consistent with [19]. Indeed, the vertical 1-forms we obtain coincide with the ones obtained
by Bryant and Salamon, up to renaming the ρis.
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2.3.3.2 The Spin(7)-structures

If r2 := a20 + a21 + a22 + a23 is the square of the distance function from the zero section and
c is a positive constant, then, the Spin(7)-structures defined by Bryant and Salamon are:

Φc :=16(c+ r2)−4/5ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 + 25(c+ r2)6/5b0 ∧ b1 ∧ b2 ∧ b3

+ 20(c+ r2)1/5(A1 ∧ Ω1 + A2 ∧ Ω2 + A3 ∧ Ω3),
(2.3.3)

where Ai := ξ0 ∧ ξi − ξj ∧ ξk. As usual, (i, j, k) is a cyclic permutation of (1, 2, 3).
The metric induced by Φc is

gc := 4(c+ r2)−2/5(ξ20 + ξ21 + ξ22 + ξ23) + 5(c+ r2)3/5(b20 + b21 + b22 + b23), (2.3.4)

while the induced volume element is

volc := (20)2 (c+ r2)2/5(ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 ∧ b0 ∧ b1 ∧ b2 ∧ b3). (2.3.5)

Setting c = 0 and M0 := S/−(S
4) \ S4 ∼= R+ × S7, we obtain a Spin(7) cone (M0,Φ0),

i.e. M0 with the metric induced by the Spin(7)-structure Φ0 is a Riemannian cone.

Theorem 2.3.13 (Bryant–Salamon [19]). Let (Mc,Φc) be the spinor bundle of S4 (or
the relative cone) endowed with the Bryant-Salamon Spin(7)-structure Φc, c ≥ 0. Then,
dΦc = 0 and Hol(Mc, gc) = Spin(7).

Remark 2.3.14. If we define f(r2) := 5(c + r2)3/5 and g(r2) := 4(c + r2)−2/5, then, these
functions satisfy the following equations:

˙(fg) =
k

4
g2, ˙(f 2) =

3k

2
fg, (2.3.6)

where the dot denotes the derivative with respect to r2.
In general, the Bryant–Salamon torsion-free Spin(7)-structures on the negative spinor

bundle over a self-dual Einstein 4 manifold of scalar curvature k are characterized by the
Cayley 4-form:

Φ :=g2ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 + f 2b0 ∧ b1 ∧ b2 ∧ b3 + fg

3󰁛

i=1

Ai ∧ Ωi,

with f, g satisfying Eq. (2.3.6).
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2.3.3.3 Automorphism Group

In the setting we are considering, Bryant and Salamon noticed that the diffeomorphisms
given by the Sp(2) × Sp(1)-action described as follows are actually the automorphism
group [19, Theorem 2]. Consider SO(5) acting on S4 in the standard way. This induces an
action on the frame bundle of S4 via the differential, which easily lifts to a Spin(5) ∼= Sp(2)

action on PSpin(4). If we combine it with the standard quaternionic left-multiplication by
unit vectors on H, we have defined an Sp(2)×Sp(1) action on PSpin(4)×H. As it commutes
with µ−, it passes to the quotient S/−(S

4).
By Lie group theory [51, Appendix B], we know that the 3-dimensional connected

closed subgroups of Sp(2) are the lift of one of the following subgroups of SO(5):

SO(3)× Id2, Sp(1)× Id1,

SO(3) acting irreducibly on R5,

where Sp(1)×Id1 denotes both the subgroup acting on H×R by left multiplication and by
right multiplication of the quaternionic conjugate. Observe that they are all diffeomorphic
to SU(2). In particular, the family of 3-dimensional subgroups that do not sit diagonally
in Sp(2)× Sp(1) consists of

G× 1Sp(1) ⊂ Sp(2)× Sp(1)

and
1Sp(2) × Sp(1) ⊂ Sp(2)× Sp(1),

where G is one of the lifts above. These are going to be the subgroups of the automorphism
group that we will take into consideration in Chapter 4.

2.4 Multi-moment maps

In [62] and [63], Madsen and Swann extended the classical notion of moment maps for
symplectic manifolds to any closed geometry (M,α), i.e. a manifold X endowed with a
closed form α. In order to recall the precise definition, we need to briefly discuss some
properties of multi-vectors.

2.4.1 Cartan’s extended formula

In this subsection we recall the basic definitions and properties of multi-vectors.
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Definition 2.4.1. A multi-vector of degree k is a section of Γ(ΛkTM). A multi-vector
of degree k, q, is simple if it has the form:

q = X1 ∧ . . . ∧Xk,

for Xi ∈ Γ(TM).

There is a natural extension of the interior product on differential forms which can be
defined on simple multi-vectors and extended R-linearly to the whole space:

i : Γ(ΛkTM)× Γ(ΛrT ∗M) → Γ(Λ(r−k)T ∗M)

(X1 ∧ . . . ∧Xk,α) 󰀁→ iXk
◦ . . . ◦ iX1α

Note that there is another important space describing k-tuples of tangent vectors:
Λk

R(Γ(TM)). It is important to observe that Λk
R(Γ(TM)) ∕= Γ(ΛkTM). Indeed, the

former is much bigger than the latter, which is equal to Λk
C∞(M)(Γ(TM)). However,

there is a natural R-linear projection Λk
R(Γ(TM)) → Γ(ΛkTM) which can be defined on

decomposable elements by:

X1 ⋏ . . .⋏Xk 󰀁→ X1 ∧ . . . ∧Xk,

where ⋏ denotes the R-wedge product. If Q = X1 ⋏ . . .⋏Xk ∈ Λk
R(Γ(TM)) is decompos-

able, then, we can define:

Qi = (−1)iX1 ⋏ . . .⋏Xi−1 ⋏Xi+1 · · ·⋏Xk,

Qij = (Qi)j.

We also define the following useful operators which extend to the whole Λk
R(Γ(TM)) by

R-linearity:

LQα =
s󰁛

l=1

iQi
LXi

α,

L(Q) =
󰁛

i,j

[Xi, Xj]⋏Qij,

where α is a given differential form.

Lemma 2.4.2 (Extended Cartan’s formula; Madsen–Swann [63]). Let α ∈ Γ(ΛrT ∗M)

and let p ∈ Γ(ΛkTM). Then, for every P ∈ Λk
R(Γ(TM)) projecting to p we have:

ipdα− (−1)kd(ipα) = LPα− iL(P )α.
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2.4.2 Multi-moment maps

Let G ⊂ Aut(M,α) and let g be the Lie algebra of G, which we identify in the usual way
with the vector fields generated by G, i.e., g ⊂ Γ(TM). Under this identification, we have
Λkg ⊂ Λk

R(Γ(T
∗M)). Moreover, since the map sending an element of g to a vector field is

R-linear, for every element of Λkg, we can associate a unique multi-vector. In other words,
there is a natural inclusion of Λkg in Λk

R(Γ(T
∗M)), and the projection to Γ(ΛkTM), when

restricted to Λkg, is injective.
Observe that in this setting, the Extended Cartan’s formula becomes:

(−1)kd(ipα) = −iL(p)α,

for every p ∈ Λkg. This equation motivates the following definition.

Definition 2.4.3 (Madsen–Swann [63]). Let g be a Lie algebra. The kth Lie kernel of g
is:

Pg,k = ker(L : Λkg → Λk−1g).

Example 2.4.4. Here are some examples of kth Lie kernels.

1. If G is abelian, Pg,k = Λkg for every k,

2. For any Lie group Pg,1 = g,

3. Psu(2),3 = Λ3su(2),

4. Pt2×su(2),3 = Λ3su(2)⊕ (Λ2t2 ⊗ Λ1su(2)),

5. Pt2×su(2),2 = Λ2t2 ⊕ (Λ1t2 ⊗ Λ1su(2)).

Remark 2.4.5. If (M,α) is a closed geometry of degree r, then ipα is a closed form for
every p ∈ Pg,r−1. Moreover, if H1(M) = {0}, then there exists a function νp such that
dνp = ipα.

Definition 2.4.6 (Madsen–Swann [63]). Let (M,α) be a closed geometry of degree k, and
let G ⊂ Aut(M,α). A multi-moment map with respect to this action is an equivariant
map ν : M → P∗

g,k−1 such that:
d〈ν, p〉 = ipα,

for every p ∈ Pg,k−1.

Remark 2.4.7. For instance, the existence of multi-moment maps is granted if H1(M) =

{0} and G is compact. This is always going to be our case for the rest of this thesis.

Multi-moment maps were particularly successful in the toric setting, where the kth Lie
kernel is trivial. Indeed, multi-moment maps were used to study toric G2 manifolds [64],
toric Spin(7) manifolds [65] and nearly–Kähler toric manifolds [26].

33



Chapter 3

Calibrated fibrations and linear
calibrated vector bundles

In this chapter, we consider manifolds with exceptional holonomy that are fibred, in a
suitable sense, by coassociative or Cayley submanifolds.

As a first step, we will give a general definition of locally trivial calibrated fibrations
in a Riemannian manifold (M, g) endowed with a calibration α. These objects are fibre
bundles whose fibres are calibrated submanifolds. The Riemannian structure, g, induces
an Ehresmann connection on the bundle. This splitting extends to the algebra of differ-
ential forms and, hence, to the condition dα = 0. The process was reversed in the cases
of our interest by Donaldson in [27] (cfr. Proposition 3.1.2 and Proposition 3.1.3).

The definition of calibrated fibration that we will use in Chapter 4 and Chapter 5 is
adapted, to a general setting, from the definition of coassociative fibrations introduced by
Karigiannis and Lotay in [49]. Such a definition coincides with the locally trivial one in
a open dense set, and allows the fibres to be singular and/or intersect in the complement
of this open dense set.

Afterwards, we turn our attention to a special class of coassociative and Cayley fi-
brations, which we call linear coassociative fibrations and linear Cayley fibrations. These
objects are locally trivial calibrated fibrations on a Euclidean vector bundle, endowed with
a compatible linear connection and G2 or Spin(7) structure. Under an isotropic condition,
we are able to explicitely solve the systems of PDEs corresponding to the torsion-free con-
dition. All the solutions turned out to be deformations of the Bryant–Salamon manifolds
described in Section 2.2.4 and Section 2.3.3.

34



3.1 Calibrated fibrations in manifolds of exceptional
holonomy

3.1.1 Definitions of calibrated fibrations

The obvious way to define a calibrated fibration is as follows.

Definition 3.1.1. Let (M, g) be an n-dimensional manifold with a k-dimensional cal-
ibration α, k ≤ n. M admits a locally trivial α-calibrated fibration if there exists a
(n − k)-dimensional manifold B and a smooth fibre bundle structure π : M → B such
that π−1(b) is an α-calibrated submanifold of M for every b ∈ B.

Given a locally trivial calibrated fibration π : M → B, we can use the Riemannian
metric g to define an Ehresmann connection H on M . This means that we have a splitting
of TM = H ⊕ V , where V is the tangent bundle along the fibres. Moreover, the splitting
propagates to the space of k-forms:

Γ(ΛkT ∗M) =
󰁐

p,q≥0,p+q=k

Γp,q.

Under this decomposition, the exterior differential splits into d = dF + dH + FH , where:

dF : Γp,q → Γp,q+1,

dH : Γp,q → Γp+1,q,

FH : Γp,q → Γp+2,q−1.

The condition that the fibres of the bundle are α-calibrated and dα = 0, gives a system
of PDEs. In the case of our interest we can reverse this procedure as follows.

Proposition 3.1.2 (Donaldson [27]). Let π : M → B be a fibre bundle with 7-dimensional
total space M and 3-dimensional base space B. A G2-structure on M with coassociative
fibres diffeomorphic to F , is equivalent to the following data:

• a connection H, identified with its horizontal distribution,

• an ω ∈ Γ(1,2) such that, at each point, ω can be viewed as an injection of H to a
maximal negative subspace for the wedge product,

• a tensor λ ∈ Γ(3,0) such that the value of λ is positive at each point, regarded as an
element of Γ(Λ3T ∗B).
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Explicitly, the induced G2-structure is ϕ = λ+ ω, and the torsion-free condition becomes
the following system of PDEs:

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

dFω = 0
dHω = 0,
dFλ = −FHω,
dHµ = 0,
dFΘ = −FHµ,
dHΘ = 0,

(3.1.1)

where µ and Θ are determined algebraically from ω and λ (cfr. [27, Lemma 3]).

Proposition 3.1.3 (Donaldson [27]). Let π : M → B be a fibre bundle, with M 8-
dimensional and B 4-dimensional. A Spin(7)-structure on M with Cayley fibres diffeo-
morphic to F , is equivalent to the following data:

• a connection H, identified with its horizontal distribution,

• a tensor λ ∈ Γ(4,0) such that the value of λ is positive at each point, regarded as an
element of Γ(Λ4T ∗B),

• a tensor µ ∈ Γ(0,4) such that the value of µ is positive at each point, regarded as an
element of Γ(Λ4T ∗F ),

• a tensor ν ∈ Γ(2,2) such that at each point ν can be viewed as an isomorphism between
anti-self-dual two forms of H and V .

Explicitly, the induced Spin(7)-structure is Φ = λ+ µ+ ν, and the torsion-free condition
becomes the following system of PDEs:

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

dFλ+ FHν = 0,
dHµ = 0,
dHν = 0,
dFν + FHµ = 0.

(3.1.2)

These propositions are a consequence of the local model for G2 and Spin(7) manifolds
and from splitting the torsion-free condition (dϕ = d ∗ ϕ = 0 and dΦ = 0, respectively)
with respect to the connection H.

In Chapters 4 and 5, we will need a different definition for calibrated fibration, which
allows singular and intersecting fibres. The reason behind this looser definition comes
from physics, where it is important to let the fibres to be singular, and from the following
proposition:
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Proposition 3.1.4 (Baraglia [8]). There are no locally trivial coassociative fibrations on
compact manifolds with full holonomy G2.

The definition of calibrated fibration that we will make use of is:

Definition 3.1.5. Let (M, g) be an n-dimensional manifold with a k-dimensional calibra-
tion α, k ≤ n. M admits a α-calibrated fibration if there exists a family of α-calibrated
submanifolds Nb (possibly singular) parametrized by a (n − k)-dimensional space B sat-
isfying the following properties:

• M is covered by the family {Nb}b∈B;

• there exists an open dense set B◦ ⊂ B such that Nb is smooth for all b ∈ B◦;

• there exists an open dense set M ′ ⊂ M , a submanifold B′ ⊂ B and a smooth fibre
bundle π : M ′ → B′ with fibre Nb for all b ∈ B′.

Remark 3.1.6. The last point allows the α-calibrated submanifolds in the family B to
intersect. Indeed, this may happen in M \M ′. Moreover, we may lose information (e.g.
completeness and topology) when we restrict the fibres to M ′.

Remark 3.1.7. It is clear that a locally trivial calibrated fibration is, in particular, a
calibrated fibration with B◦ = B and M ′ = M .

3.2 Linear coassociative fibrations

In this section, we study a special case of coassociative fibrations. Namely, locally trivial
coassociative fibrations with a compatible vector bundle and G2-structure.

Definition 3.2.1. Let (M,ϕ) be a G2 manifold and let B a 3-dimensional manifold. A
locally trivial coassociative fibration π : M → B is a linear coassociative fibration if the
following conditions are satisfied:

• π : M → B has the structure of a Euclidean vector bundle,

• the induced connection H is linear, i.e. it is induced by a covariant derivative ∇,
and it is compatible with the Euclidean structure,
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• at every point of B there exists a local coframe {b1, b2, b3} of B and a local orthonor-
mal trivialization of the bundle {σ0, σ1, σ2, σ3} such that the G2-structure on M and
relative Hodge dual are respectively given by:

ϕ :=f123b1 ∧ b2 ∧ b3 +
3󰁛

i=1

fibi ∧ (g0iξ0 ∧ ξi − gjkξj ∧ ξk),

∗ϕ =g0123ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 −
3󰁛

i=1

fjkbj ∧ bk ∧ (g0iξ0 ∧ ξi − gjkξj ∧ ξk),

where fi, gi are smooth positive functions on M , (i, j, k) is a positive permutation of
(1, 2, 3) and {ξ0, ξ1, ξ2, ξ3} is the dual of the basis induced by the σis on the vertical
space.

Example 3.2.2. The local model R7 ∼= R3 ⊕ R4, as described in Section 2.2.1, is a
linear coassociative fibration. In this case, the connection is trivial. A nontrivial example
consists of the Bryant–Salamon manifold of topology S/(S3). The linear connection is
simply the spin connection in this setting.

3.2.1 The system of PDEs for linear coassociative fibrations

We now want to write explicitly the local system of PDEs for the torsion-free condition
in the linear coassociative fibrations case. To this end, let {e1, e2, e3} be a the dual frame
of the coframe {b1, b2, b3} given in Definition 3.2.1. The coframe induces a metric on B,
gB :=

󰁓3
i=1 b

2
i , and the relative Levi-Civita connection induces the connection matrix

{ωj
i } ∈ so(n), which satisfies the structure equations:

db = −ω ∧ b,

R = dω + ω ∧ ω,

where R ∈ so(n) denotes the curvature 2-form.
Let {σ0, σ1, σ2, σ3} be a local orthonormal trivialization of the Euclidean bundle as

in Definition 3.2.1, inducing the parametrization of the fibres: a0σ0 + ... + a3σ3. Since
the connection, H, is compatible with the Euclidean structure, we get the associated
connection matrix of 1-forms {Aj

i} ⊂ so(n) and the curvature matrix of 2-forms {F j
i } ⊂

so(n). These matrices of differential forms are related by the structural equation:

F = dA+ A ∧ A.
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It is well-known that the dual of the horizontal and the vertical spaces are spanned,
respectively, by:

bi := π∗(bi), ξl := dal +
3󰁛

m=0

Al
mam,

for i = 1, ..., 3 and l = 0, ..., 3.

Remark 3.2.3. From now on, as an abuse of notation, we will omit the pullback symbol
from our discussion. Moreover, products of functions denoted by the same letter, but
with different subscripts, will just be written with repeated subscripts, e.g., if f1, f2, f3
are smooth functions, then, f1 · f2 = f12 and f1 · f2 · f3 = f123.

From a straightforward computation, we can write the system of PDEs explicitly.

Proposition 3.2.4. Let π : M → B be a linear coassociative fibration. The torsion-free
condition becomes, in a local trivialization as in Definition 3.2.1, the following system of
PDEs:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 =
󰁓3

i=1

󰀃󰁓3
l=0 ∂al(fig0i)ξl ∧ ξ0 ∧ ξi − ∂al(figjk)ξl ∧ ξj ∧ ξk

󰀄

0 =
󰁓3

i=1

󰀃󰁓3
l=1 el(fig01)bl ∧ bi ∧ ξ0 ∧ ξi − el(figjk)bl ∧ bi ∧ ξj ∧ ξk

−
󰁓3

l,m=0 ∂al(fig0i)amA
l
m ∧ bi ∧ ξ0 ∧ ξi − ∂al(figjk)amA

l
m ∧ bi ∧ ξj ∧ ξk

+
󰁓3

l=1 fig0i(−ωi
l ∧ bl ∧ ξ0 ∧ ξi)− figjk(−ωi

l ∧ bl ∧ ξj ∧ ξk)

−
󰁓3

l=0 fig0ibi ∧ (ξl ∧ A0
l ∧ ξi − ξ0 ∧ ξl ∧ Ai

l)

−
󰁓3

l=0 −figjkbi ∧ (ξl ∧ Aj
l ∧ ξk − ξj ∧ ξl ∧ Ak

l )
󰀄

0 =
󰁓3

l=0 ∂al(f123)ξl ∧ b1 ∧ b2 ∧ b3
−
󰁓3

i=1 fig01bi ∧ (F 0
a ∧ ξi − F i

a ∧ ξ0)− figjkbi ∧ (F j
a ∧ ξk − F k

a ∧ ξj)

0 =
󰀃󰁓3

l=1 el(g0123)bl −
󰁓3

l,m=0 ∂al(g0123)amA
l
m

󰀄
∧ ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3

0 =
󰁓3

i=1

󰁓3
l=0 ∂al(fjkg0i)ξl ∧ bj ∧ bk ∧ ξ0 ∧ ξi − ∂al(fjkgjk)ξl ∧ bj ∧ bk ∧ ξj ∧ ξk

−g0123
󰁓3

l=0(−1)lF l
a ∧ ξ0 ∧ ... ∧ ξ̂l ∧ ... ∧ ξ4

0 =
󰁓3

i=1

󰁓3
l=1 el(fjkg0i)bl ∧ bj ∧ bk ∧ ξ0 ∧ ξi − el(fjkgjk)bl ∧ bj ∧ bk ∧ ξj ∧ ξk

+
󰁓3

l,m=0 ∂al(fjkg0i)amA
l
m ∧ bj ∧ bk ∧ ξ0 ∧ ξi

−
󰁓3

l,m=0 ∂al(fjkgjk)amA
l
m ∧ bj ∧ bk ∧ ξj ∧ ξk

−
󰁓3

l=1 fjk(ω
j
l ∧ bl ∧ bk − bj ∧ ωk

l ∧ bl) ∧ (g01ξ0 ∧ ξ1 − gjkξj ∧ ξk)

+
󰁓3

l=0 fjkg0ibj ∧ bk ∧ (ξl ∧ A0
l ∧ ξi − ξ0 ∧ ξl ∧ Ai

l)

−
󰁓3

l=0 fjkgjkbj ∧ bk ∧ (ξl ∧ Aj
l ∧ ξk − ξj ∧ ξl ∧ Ak

l )

,

(3.2.1)

where F l
a :=

󰁓3
m=0 F

l
mam.

Example 3.2.5. We now give a local example of a linear coassociative fibration. Let B be
a 3-manifold of constant sectional curvature k with local orthonormal coframe {b1, b2, b3}.
Let E be a Euclidean vector 4-bundle with local orthonormal sections, {σ0, σ1, σ2, σ3},
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and let A be the relative metric compatible connection:

A =

󰀳

󰁅󰁅󰁃

0 −α1 −α2 −α3

α1 0 −α3 − 2ρ3 α2 + 2ρ2
α2 α3 + 2ρ3 0 −α1 − 2ρ1
α3 −α2 − 2ρ2 α1 + 2ρ1 0,

󰀴

󰁆󰁆󰁄 ,

where ρi =
1
2
ωk
j and the αi are such that A is compatible with the curvature matrix:

F = −k

2

󰀳

󰁅󰁅󰁃

0 b2 ∧ b3 b3 ∧ b1 b1 ∧ b2
−b2 ∧ b3 0 −b1 ∧ b2 b3 ∧ b1
−b3 ∧ b1 b1 ∧ b2 0 −b2 ∧ b3
−b1 ∧ b2 −b3 ∧ b1 b2 ∧ b3 0

󰀴

󰁆󰁆󰁄 ,

i.e. F = dA+A∧A. If {ξ0, ξ1, ξ2, ξ3} are the vertical 1-forms dual to the basis induced by
the σis on the vertical space, then, it is straightforward to check that the G2-structure:

ϕ = f 3b1 ∧ b2 ∧ b3 + fg2
3󰁛

i=1

bi ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

is torsion-free when f, g are functions only depending on the square of the distance from
the zero section, r2, and satisfying the ODEs in r2:

˙(fg2) = 0, ˙(f 3) =
3k

4
fg2, g4

k

4
= ˙(f 2g2).

We call such examples deformed G2 Bryant–Salamon manifolds. Indeed, if we pick αi =

−ρi, then, E becomes the spinor bundle over B and we recover the Bryant–Salamon
manifolds of topology S/(S3) (cfr. Remark 2.2.19).

A similar idea was employed by Herfray–Krasnov–Scarinaci–Shtanov in [38] for the
Bryant–Salamon manifolds of topology Λ2

−(X).

3.2.2 Isotropic linear coassociative fibrations

Even though Eq. (3.2.1) is a complicated system of PDEs, under some isotropic condition
we are able to find all the solutions of the system.

Theorem 3.2.6. Let (M,ϕ) be a linear coassociative fibration such that the horizontal
and vertical spaces are isotropic, i.e., for every p ∈ M and unit v, w ∈ Hp ⊂ TpM (or
Vp ⊂ TpM) there exists a local isomorphism F of (M,ϕ) such that dFp(v) = w. Then,
(M,ϕ) is locally isomorphic to a deformed G2 Bryant–Salamon manifold.

Proof. Under the isotropic condition, we have f := fi for all i = 1, 2, 3 and g := gl for all
l = 0, 1, 2, 3. Hence, the system of Eq. (3.2.1) becomes:
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󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 = ∂al(fg
2)
󰁓3

i=1

󰀃󰁓3
l=0 ξl ∧ ξ0 ∧ ξi − ξl ∧ ξj ∧ ξk

󰀄

0 =
󰁓3

i=1

󰀃󰁓3
l=1 el(fg

2)bl ∧ bi ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

−
󰁓3

l,m=0 ∂al(fg
2)amA

l
m ∧ bi ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

−
󰁓3

l=1 fg
2ωi

l ∧ bl ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

−
󰁓3

l=0 fg
2bi ∧ (ξl ∧ A0

l ∧ ξi − ξ0 ∧ ξl ∧ Ai
l − ξl ∧ Aj

l ∧ ξk + ξj ∧ ξl ∧ Ak
l )
󰀄

0 =
󰁓3

l=0 ∂al(f
3)ξl ∧ b1 ∧ b2 ∧ b3

−
󰁓3

i=1 fg
2bi ∧ (F 0

a ∧ ξi − F i
a ∧ ξ0 − F j

a ∧ ξk + F k
a ∧ ξj)

0 =
󰀃󰁓3

l=1 el(g
4)bl −

󰁓3
l,m=0 ∂al(g

4)amA
l
m

󰀄
∧ ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3

0 =
󰁓3

i=1

󰁓3
l=0 ∂al(f

2g2)ξl ∧ bj ∧ bk ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

−g4
󰁓3

l=0(−1)lF l
a ∧ ξ0 ∧ ... ∧ ξ̂l ∧ ... ∧ ξ4

0 =
󰁓3

i=1(
󰁓3

l=1 el(f
2g2)bl +

󰁓3
l,m=0 ∂al(f

2g2)amA
l
m) ∧ bj ∧ bk ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

−
󰁓3

l=0 f
2g2(ωj

l ∧ bl ∧ bk − bj ∧ ωk
l ∧ bl) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

+
󰁓3

l=0 f
2g2bj ∧ bk ∧ (ξl ∧ A0

l ∧ ξi − ξ0 ∧ ξl ∧ Ai
l)

−
󰁓3

l=0 f
2g2bj ∧ bk ∧ (ξl ∧ Aj

l ∧ ξk − ξj ∧ ξl ∧ Ak
l )

.

(3.2.2)

We begin our analysis from the fifth equation, which becomes, after regrouping:

−g4F 0
a =

3󰁛

i=1

∂ai(f
2g2)bj ∧ bk, (3.2.3)

−g4F i
a = ∂ak(f

2g2)bk ∧ bi − ∂aj(f
2g2)bi ∧ bj − ∂a0(f

2g2)bj ∧ bk, (3.2.4)

where, as usual, (i, j, k) is any cyclic permutation of (1,2,3). As {F i
j} ∈ so(4), we can see

that:

0 = g4F a
a = −

3󰁛

i=1

Ei(f
2g2)bj ∧ bk,

where the Eis are the generators of sp(1):

E1 = a1∂a0 − a0∂a1 − a3∂a2 + a2∂a3 ,

E2 = a2∂a0 + a3∂a1 − a0∂a2 − a1∂a3 ,

E3 = a3∂a0 − a2∂a1 + a1∂a2 − a0∂a3 .

As a consequence of this, we deduce that f 2g2 only depends on r2 = a20 + a21 + a22 + a33

when restricted to a fibre, and hence, ∂ai(f 2g2) = 2ai ˙(f 2g2), where the dot denotes the
derivative with respect to r2. Another way to rewrite Eq. (3.2.3) and Eq. (3.2.4) in terms
of the Eis is:

−g4FEi
a = 2r2 ˙(f 2g2)bj ∧ bk, (3.2.5)
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which holds for every i = 1, 2, 3. Observe that Eq. (3.2.5) implies that FE1
a23 = FE2

a31 = FE3
a12.

Now, since one can easily verify from the antisymmetry of F that Ei(F
Ei
ajk) = 0, we deduce

that FEi
ajk depends only on r2, when restricted to any fibre. Therefore, Eq. (3.2.5) implies

that g, and consequently f , has the same property. Finally, we deduce that the curvature
form is:

F = −k

2

󰀳

󰁅󰁅󰁃

0 b2 ∧ b3 b3 ∧ b1 b1 ∧ b2
−b2 ∧ b3 0 −b1 ∧ b2 b3 ∧ b1
−b3 ∧ b1 b1 ∧ b2 0 −b2 ∧ b3
−b1 ∧ b2 −b3 ∧ b1 b2 ∧ b3 0

󰀴

󰁆󰁆󰁄 ,

where k := −2F 0
123 = −2F 0

231 = −2F 0
312. The functions, f , g and k satisfy:

g4
k

4
= ˙(f 2g2). (3.2.6)

We now turn our attention to the other equations. The first and the third ones read,
respectively:

˙(fg2) = 0, (3.2.7)

˙(f 3) =
3k

4
fg2. (3.2.8)

The fourth one implies that g is independent from the basis B. Indeed, A being a metric
connection implies

󰁓
l,m

˙(g4)alamA
l
m = 0.

Before studying the remaining two equations of Eq. (3.2.2), we make the following
assumption, which we will prove later.

Claim: Up to changing the metric gB, f can be assumed to be independent from the
basis B.

The claim, together with Eq. (3.2.6), implies that k is a constant. Moreover, since
ei(f) = 0 for every i = 1, 2, 3, we deduce that the two remaining equations become:

0 =− (ωj
i + Ak

0 − Aj
i ) ∧ bk ∧ bi + (ωi

k + Aj
0 − Ai

k) ∧ bi ∧ bj,

0 =− 2(ωj
i + Ak

0 − Aj
i ) ∧ bj + (ωi

k + Aj
0 − Ai

k) ∧ bk,

for every (i, j, k) cyclic permutation of (1, 2, 3). Therefore, one can verify that:

ωj
i + Ak

0 − Aj
i = 0. (3.2.9)

Combing the structure equations for the curvature forms, R,F , with Eq. (3.2.9), we
obtain:

Ri
j = F i

0 − F k
j = kbi ∧ bj.
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Hence, (B, gB) has constant sectional curvature k and we conclude.
Proof of the claim: The second (or, analogously, the sixth) equation of Eq. (3.2.2),

implies that el(f
2)/f 2 = el(log(f

2)) is independent from the fibres, hence, f 2 can be
rewritten as the product of f 2

B, depending only on B, and f 2
F depending only on the

fibres. Changing the metric on B such that {fBbi}i form an orthonormal frame, we can
reabsorb el(f

2) into the connection term and assume f independent from the base.

Remark 3.2.7. Observe that the isotropy condition rules out well-known examples coming
from lower dimensional geometries. For instance, one can notice the product of a Calabi–
Yau manifold with a flat R is a G2-manifold of the form described in Proposition 3.2.4.
However, the fi or gi corresponding to the flat direction would need to be constant. This
clearly gives a contradiction unless we are in the flat local model, where they all coincide.

3.3 Linear Cayley fibrations

Similarly to linear coassociative fibrations, we consider locally trivial Cayley fibrations
with a compatible vector bundle and Spin(7)-structure.

Definition 3.3.1. Let (M,Φ) be a Spin(7) manifold and let B a 4-dimensional manifold.
A locally trivial Cayley fibration π : M → B is a linear Cayley fibration if the following
conditions are satisfied:

• π : M → B has the structure of a Euclidean vector bundle,

• the connection H is linear, i.e., it is induced from a covariant derivative ∇, and it
is compatible with the Euclidean structure,

• at every point of B there exists a local coframe {b0, b1, b2, b3} of B and a local or-
thonormal trivialization of the bundle {σ0, σ1, σ2, σ3} such that the Spin(7)-structure
on M is given by:

Φ :=f0123b0 ∧ b1 ∧ b2 ∧ b3 + g0123ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3+

+
3󰁛

i=1

(g0iξ0 ∧ ξi − gjkξj ∧ ξk) ∧ (f0ib0 ∧ bi − fjkbj ∧ bk),

where fi, gi are smooth positive functions on M and (i, j, k) is a positive permutation
of (1, 2, 3) and {ξ0, ξ1, ξ2, ξ3} is the dual of the basis induced by the σi on the vertical
space.
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Example 3.3.2. The local model R8 ∼= R4 ⊕R4, as described in Section 2.3.1, is a linear
Cayley fibration. The product of a flat R4 with an hyperkähler manifold is a linear Cayley
fibration. In these cases, the connection is trivial.

A nontrivial example consists of the Bryant–Salamon manifolds S/−(S
4). The linear

connection is simply the spin connection in this setting.

3.3.1 The system of PDEs for linear Cayley fibrations

As in Section 3.2.1, we rewrite the local system of PDEs for the torsion-free condition
in the linear Cayley fibrations case. Let {b0, b1, b2, b3} be as in Definition 3.3.1 with dual
frame {e0, e1, e2, e3}. The frame induces a metric on B, gB :=

󰁓3
i=0 b

2
i , and hence a relative

Levi-Civita connection form {ωj
i }. This connection form and the relative curvature 2-form,

R ∈ so(n), satisfy the structure equations:

db = −ω ∧ b,

R = dω + ω ∧ ω.

We parametrize the fibres by a0σ0 + a1σ1 + a2σ2 + a3σ3, where the σis are as in Defi-
nition 3.3.1. If {Aj

i} ∈ so(n) is the connection matrix with respect to this trivialization,
then the curvature matrix is {F i

j = dAi
j +

󰁓
l A

i
l ∧ Al

m}.
The dual of the horizontal and the vertical spaces are spanned, respectively, by:

bi := π∗(bi), ξi := dai +
n󰁛

l=0

Ai
lal,

for i = 0, ..., 3.
An explicit computation, similar to the one for Proposition 3.2.4, gives the system of

PDEs for the torsion-free condition.

Proposition 3.3.3. Let π : M → B be a linear Cayley fibration. The torsion-free
condition becomes, in a local trivialization as in Definition 3.3.1, the following system of
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PDEs:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 =
󰁓3

l=0 ∂al(f0123)ξl ∧ volH
+
󰁓3

i=1 Ω̃i ∧
󰀃
g0i(F

0
a ∧ ξi − F i

a ∧ ξ0)− gjk(F
j
a ∧ ξk − F k

a ∧ ξj)
󰀄

0 =
󰁓3

l=0

󰀃
el(g0123)bl − ∂al(g0123)

󰁓3
m=0 A

l
mam

󰀄
∧ volV

0 =
󰁓3

i=1

󰀃󰁓3
l,m=0(∂alfjk)amA

l
m ∧ bj ∧ bk −

󰁓3
l,m=0(∂alf0i)amA

l
m ∧ b0 ∧ bi

󰀄
∧Υi+

+
󰀃󰁓3

l,m=0(∂algjk)amA
l
m ∧ ξj ∧ ξk −

󰁓3
l,m=0(∂alg0i)amA

l
m ∧ ξ0 ∧ ξi

󰀄
∧ Ω̃i+

+
󰀃󰁓3

l=0(elg0i)bl ∧ ξ0 ∧ ξi −
󰁓3

l=0(elgjk)bl ∧ ξj ∧ ξk
󰀄
∧ Ω̃i+

+
󰀃󰁓3

l=0(elf0i)bl ∧ b0 ∧ bi −
󰁓3

l=0(elfjk)bl ∧ bj ∧ bk
󰀄
∧Υi+

+
󰀃
(ωk

i f0i − ω0
j fjk)b0 ∧ bk − (ωk

i fjk − ω0
j f0i)bi ∧ bj)

󰀄
∧Υi

+
󰀃
(ω0

kfjk − ωi
jf0i)b0 ∧ bj − (ω0

kf0i − ωi
jfjk)bk ∧ bi

󰀄
∧Υi

+
󰀃
(Ak

i g0i − A0
jgjk)ξ0 ∧ ξk − (gjkA

k
i − A0

jg0i)ξi ∧ ξj)
󰀄
∧ Ω̃i

+
󰀃
(A0

kgjk − Ai
jg0i)ξ0 ∧ ξj − (A0

kg0i − Ai
jgjk)ξk ∧ ξi

󰀄
∧ Ω̃i

0 =
󰁓3

i=1

󰀃󰁓3
l=0

󰀃
(∂alf0i)b0 ∧ bi − (∂alfjk)bj ∧ bk

󰀄
∧ ξl

󰀄
∧Υi

+
󰀃󰁓3

l=0

󰀃
(∂alg0i)ξ0 ∧ ξi − (∂algjk)ξj ∧ ξk

󰀄
∧ ξl

󰀄
∧ Ω̃i

+g0123
󰁓3

l=0(F
l
a ∧ ξ0 ∧ ... ∧ ξ̂l ∧ ... ∧ ξ4)

,

(3.3.1)

where F l
a :=

󰁓3
m=0 F

l
mam, volH = b0 ∧ b1 ∧ b2 ∧ b3, Ω̃i := f0ib0 ∧ bi − fjkbj ∧ bk and

Υi := g0iξ0 ∧ ξi − gjkξj ∧ ξk.

Example 3.3.4. We now give a local example of linear Cayley fibration. Let B be
a self-dual, Einstein 4-manifold of scalar curvature k with local orthonormal coframe
{b0, b1, b2, b3}. Consider on B the 1-forms ρi, for i = 1, 2, 3 characterized by the equation:

d

󰀳

󰁃
Ω1

Ω2

Ω3

󰀴

󰁄 = −

󰀳

󰁃
0 −2ρ3 2ρ2
2ρ3 0 −2ρ1
−2ρ2 2ρ1 0

󰀴

󰁄 ∧

󰀳

󰁃
Ω1

Ω2

Ω3

󰀴

󰁄 ,

where Ωi = b0∧ bi− bj ∧ bk. Let E be a Euclidean vector 4-bundle with local orthonormal
sections, {σ0, σ1, σ2, σ3}, and let A be the metric compatible connection:

A =

󰀳

󰁅󰁅󰁃

0 −α1 −α2 −α3

α1 0 −α3 − 2ρ3 α2 + 2ρ2
α2 α3 + 2ρ3 0 −α1 − 2ρ1
α3 −α2 − 2ρ2 α1 + 2ρ1 0,

󰀴

󰁆󰁆󰁄 ,

where the αis are such that A is compatible with the curvature matrix:

F =
k

2

󰀳

󰁅󰁅󰁃

0 Ω1 Ω2 Ω3

−Ω1 0 −Ω3 Ω2

−Ω2 Ω3 0 −Ω1

−Ω3 −Ω2 Ω1 0

󰀴

󰁆󰁆󰁄 ,
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i.e. F = dA+A∧A. If {ξ0, ξ1, ξ2, ξ3} are the vertical 1-forms dual to the basis induced by
the σis on the vertical space, then, it is straightforward to check that the Spin(7)-structure:

Φ = f 2b0 ∧ b1 ∧ b2 ∧ b3 + g2ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 + fg
3󰁛

i=1

Ωi ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

is torsion-free when f, g are functions only depending on the square of the distance from
the zero section, r2, and satisfying the ODEs in r2:

˙(fg) =
k

4
g2, ˙(f 2) =

3k

2
fg.

We call such examples deformed Spin(7) Bryant–Salamon manifolds. Indeed, if we pick
αi = −ρi, then, E becomes the negative spinor bundle over B and we recover the Spin(7)

Bryant–Salamon manifolds (cfr. Remark 2.3.14).

3.3.2 Isotropic linear Cayley fibrations

Under the same isotropy condition as in Section 3.2.2, we are able to solve the PDE system
of Proposition 3.3.3. The proof is conceptually identical to the one for the G2 case.

Theorem 3.3.5. Let M be a Cayley vector bundle such that the horizontal and the vertical
spaces are isotropic, i.e., for every p ∈ M and unit v, w ∈ Hp ⊂ TpM (or Vp ⊂ TpM)
there exists a local isomorphism ϕ of (M,Φ) such that ϕ∗(v) = w. Then, (M,Φ) is locally
isomorphic to a deformed Spin(7) Bryant–Salamon manifold.

Proof. The isotropic condition implies that there are two functions, f, g on M such that
f 1/2 = fi and g1/2 = gi for all i = 0, ..., 3. Under this condition, the system Eq. (3.3.1)
becomes:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 =
󰁓3

l=0 ∂al(f
2)ξl ∧ volH +

󰁓3
i=1 fgΩi ∧

󰀃
(F 0

a ∧ ξi − F i
a ∧ ξ0)− (F j

a ∧ ξk − F k
a ∧ ξj)

󰀄

0 =
󰁓3

l=0

󰀃
el(g

2)bl − ∂al(g
2)
󰁓3

m=0 A
l
mam

󰀄

0 =
󰁓3

i=1

󰀃
−

󰁓3
l,m=0 ∂al(fg)amA

l
m

󰀄
∧ (b0 ∧ bi − bj ∧ bk) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

+
󰀃󰁓3

l=0 el(fg)bl
󰀄
∧ (b0 ∧ bi − bj ∧ bk) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

+2fg(ρk + ρ̃k) ∧ (b0 ∧ bj − bk ∧ bi) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)
−2fg(ρj + ρ̃j) ∧ (b0 ∧ bk − bi ∧ bj) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

0 =
󰁓3

i=1

󰁓3
l=0

󰀃
∂al(fg)

󰀄
ξl ∧ (b0 ∧ bi − bj ∧ bk) ∧ (ξ0 ∧ ξi − ξj ∧ ξk)

+g2
󰁓3

l=0(−1)l(F l
a ∧ ξ0 ∧ ... ∧ ξ̂l ∧ ... ∧ ξ4)

,

(3.3.2)

where Ωi = b0 ∧ bi − bj ∧ bk, 2ρi = ωk
j − ωi

0 and 2ρ̃i = Ai
0 − Ak

j for all (i, j, k) cyclic
permutation of (1, 2, 3).
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We begin our analysis from the last equation, which, once expanded and regrouped
term by term, can be rewritten as:

g2F 0
a =

3󰁛

i=1

∂ai(fg)Ωi, (3.3.3)

g2F i
a = −∂a0(fg)Ωi + ∂ak(fg)Ωj − ∂aj(fg)Ωk ∀i = 1, 2, 3. (3.3.4)

Since {F i
j} is antisymmetric, we also deduce that:

0 = −g2F a
a =

3󰁛

i=1

Ei(fg)Ωi,

where the Eis are the generators of sp(1):

E1 = a1∂a0 − a0∂a1 − a3∂a2 + a2∂a3 ,

E2 = a2∂a0 + a3∂a1 − a0∂a2 − a1∂a3 ,

E3 = a3∂a0 − a2∂a1 + a1∂a2 − a0∂a3 .

In particular, fg depends only on r2 in the fibre, and hence, ∂ai(fg) = 2ai ˙(fg). Using
again Eq. (3.3.3) and Eq. (3.3.4), it is straightforward to obtain:

g2FEi
a = 2 ˙(fg)r2Ωi (3.3.5)

for all i = 1, 2, 3, which also implies that FE1
a01 = −FE1

a23 = FE2
a02 = . . . = FE3

a12. Now, as
Ei(F

Ei
a0i) = 0, we conclude that FEi

a depends only on r2 in the fibre. Therefore, this must
be the case for g and f as well. Taking Eq. (3.3.5) along the coordinate lines we also
obtain:

g2
k

2
= 2 ˙(fg), (3.3.6)

where
k = 2F 0

i0i = −2F 0
ijk = 2F i

k0j = −2F i
kki = −2F i

j0k = 2F i
jij

for all (i, j, k) cyclic permutation of (1, 2, 3).
We now turn our attention to the other equations. Plugging in Eq. (3.3.3) and

Eq. (3.3.4) into the first equation of our system, we see that f and g need to satisfy:

gḟ = 3 ˙(fg). (3.3.7)

The second equation of Eq. (3.3.2), implies that g does not depend on the basis.
Therefore, we only have to study the third equation of Eq. (3.3.2).
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Claim: Up to changing the metric on gB, f can be assumed to be independent from
the basis B.

This claim implies that k is a constant and that the third equation of the system
becomes:

(ρk + ρ̃k) ∧ (b0 ∧ bj − bk ∧ bi)− (ρj + ρ̃j) ∧ (b0 ∧ bk − bi ∧ bj) = 0, (3.3.8)

for all (i, j, k) positive permutation of (1, 2, 3). Indeed, k depends only on the base by
definition and only on r by Eq. (3.3.6).

It is straightforward to verify from Eq. (3.3.8) that ρi + ρ̃i = 0, and hence, we can
compute the curvature of the ASD two forms on B:

d(2ρi) + (2ρj ∧ 2ρk) = − (d(2ρ̃i)− (2ρ̃j ∧ 2ρ̃k))

= −F i
0 + F k

j

= kΩi.

We deduce that B must be self-dual and Einstein [19, Fact pag. 842] and we conclude.
Proof of the claim: As f, g are functions of r2 in the fibres, the third equation of

Eq. (3.3.2) becomes:

el(f) = 4fkl, (3.3.9)

where,

k0 := (ρi + ρ̃i)i ∀i = 1, 2, 3,

ki := (ρj + ρ̃j)k = −(ρk + ρ̃k)j = −(ρi + ρ̃i)0 ∀(i, j, k) ∼ (1, 2, 3),

and where we use the convention that, given an horizontal 1-form α, we denote by (α)l

the coefficient of α in the bl term.
From Eq. (3.3.9), we deduce that el(log f) is independent from the fibres for every l,

and hence, f = fB · fF where fB is a function only depending on the basis and fF is a
function only depending on the fibre. The last crucial observation is that, changing the
metric on B such that {f 1/2

B bi}i form an orthonormal frame, we can reabsorb el(f) into
4fkl and assume f independent from the base.

Remark 3.3.6. Observe that the isotropy condition rules out well-known examples coming
from lower dimensional geometries. For instance, the product of a G2 Bryant–Salamon
manifold with a flat R is a Spin(7)-manifold of the form described in Proposition 3.3.3.
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However, the fi or gi corresponding to the flat direction would need to be constant. This
clearly gives a contradiction unless we are in the flat local model, where they all coincide.
Another remarkable example is the one given by the Stenzel metric on T ∗S4. However,
it is easy to see that this space doesn’t satisfy the isotropic condition (see for instance
equations (2.3), (2.4), (2.5) in [72]).
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Chapter 4

Cayley fibrations in the
Bryant–Salamon Spin(7) manifold

This chapter is devoted to the description of the author’s construction of Cayley fibrations
in the Bryant–Salamon Spin(7) manifolds (cfr. [71]). It is interesting to notice that the
fibres of these fibrations provide new examples of Cayley submanifolds.

The main idea used in the construction is to reduce the problem to a system of ODEs
via a group action. In particular, we consider G a 3-dimensional Lie group acting on the
given Spin(7) manifold. By Theorem 2.3.8, there exists a unique Cayley passing through
any 3-dimensional orbit of G. Hence, if the principal orbits are 3-dimensional, it is sensible
to look for G-invariant Cayleys and fibrations.

Obviously, in the non-singular set, any G-invariant submanifold Σ can be seen as a
1-parameter family of G-orbits or, equivalently, as a curve in the space of orbits. Hence,
the tangent space of Σ can be represented as the tangent space of the orbits together with
the velocity vector field of the curve. One can now plug in these tangent vectors into
τ (see Proposition 2.3.9) and obtain an explicit system of ODEs. The solutions of this
system will parametrize the Cayley fibrations, as defined in Definition 3.1.5.

The obvious place where to look for such a group is the automorphism group, which
is Sp(2) × Sp(1) in our setting. In order to simplify our computations we will consider
only the 3-dimensional subgroups that do not sit diagonally in Sp(2)×Sp(1). These were
characterized in Section 2.3.3.3.

4.1 Cayley fibration invariant under the Sp(1)-action on
the fibre

Let M := S/−(S
4) and M0 := R+ × S7 endowed with the torsion-free Spin(7)-structures

Φc constructed by Bryant and Salamon and described in Section 2.3.3.
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Observe that (M,Φc) and (M0,Φ0) admit a trivial Cayley Fibration. Indeed, it is
straightforward to see that the natural projection to S4 realizes both spaces as honest
Cayley fibrations with smooth fibres diffeomorphic to R4 and R4 \ {0}, respectively. In
both cases, the parametrizing family is clearly S4

The fibres are asymptotically conical to the cone of link S3 and metric:

ds2 +
9

25
s2gS3 ,

where s = r3/510/3 and gS3 is the standard unit round metric.
Since IdSp(2) × Sp(1) acts trivially on the basis, and as Sp(1) on the fibres of S/−(S

4)

identified with H, it is clear that the trivial fibration is invariant under IdSp(2) × Sp(1).

Remark 4.1.1. We compute the associated multi-moment map, νc, as in Definition 2.4.6.
This is:

νc :=
20

3
(r2 − 5c)(c+ r2)1/5 +

100

3
c6/5,

where we subtracted c6/5100/3 so that the range of the multi-moment map is [0,∞).
Observe that the level sets of νc coincide with the level sets of the distance function from
the zero section.

Remark 4.1.2. As in [49, Section 4.4], this fibration becomes the trivial Cayley fibration
of R8 = R4 ⊕ R4 when we blow-up at any point of the zero section.

4.2 Cayley fibration invariant under the lift of the SO(3)×
Id2-action on S4

Let M := S/−(S
4) and M0 := R+×S7 be endowed with the torsion-free Spin(7)-structures

Φc constructed by Bryant and Salamon that we described in Section 2.3.3. On each
Spin(7) manifold, we construct the Cayley Fibration which is invariant under the lift to
M (or M0) of the standard SO(3)× Id2-action on S4 ⊂ R3 ⊕ R2.

4.2.1 Choice of coframe on S4

As in [49], we choose an adapted orthonormal coframe on S4 which is compatible with the
symmetries we will impose. Since the action coincides, when restricted to S4, with the
one used by Karigiannis and Lotay on Λ2

−(T
∗S4) [49, Section 5], it is natural to employ

the same coframe, which we now recall.
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We split R5 into the direct sum of a 3-dimensional vector subspace P ∼= R3 and its
orthogonal complement P⊥ ∼= R2. As S4 is the unit sphere in R5, we can write, with
respect to this splitting:

S4 =
󰀋
(x,y) ∈ P ⊕ P⊥ : |x|2 + |y|2 = 1

󰀌
.

Now, for all (x,y) ∈ S4 there exists a unique α ∈ [0, π/2], some u ∈ S2 ⊂ P and some
v ∈ S1 ⊂ P⊥ such that:

x = cosαu, y = sinαv.

Observe that u and v are uniquely determined when α ∈ (0, π/2), while, when α = 0, π/2,
v can be any unit vector in P⊥ (y = 0) and u can be any unit vector in P (x = 0),
respectively. Hence, we are writing S4 as the disjoint union of an S2, corresponding to
α = 0, of an S1, corresponding to α = π/2, and of S2 × S1 × (0, π/2).

If we put spherical coordinates on S2 and polar coordinates on S1, then, we can write

u = (cos θ, sin θ cosφ, sin θ sinφ),

and

v = (cos β, sin β),

where θ ∈ [0, π], φ ∈ [0, 2π) and β ∈ [0, 2π). As usual, φ is not unique when θ = 0, π.
It follows that, if we take out the points where θ = 0, π from S2 × S1 × (0, π/2), we

have constructed a coordinate patch U parametrized by (α, β, θ,φ) on S4. Explicitly, U
is S4 minus two totally geodesic S2:

S2
y1,y2=0 =

󰀋
(x,0) ∈ P ⊕ P⊥ : |x|2 = 1

󰀌
,

corresponding to α = 0, and

S2
x2,x3=0 =

󰀋
(cosα, 0, 0, sinα cos β, sinα sin β) ∈ P ⊕ P⊥ : α ∈ (0, π)

󰀌
,

corresponding to θ = 0 and θ = π. Observe, that the S1 corresponding to α = π/2 is a
totally geodesic equator in S2

x2,x3=0.
A straightforward computation shows that the coordinate frame {∂α, ∂β, ∂θ, ∂φ} is

orthogonal and can be easily normalized obtaining:

f0 := ∂α, f1 :=
∂β

sinα
, f2 :=

∂θ
cosα

, f3 :=
∂φ

cosα sin θ
.
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The dual orthonormal coframe is given by:

b0 := dα, b1 := sinαdβ, b2 := cosαdθ, b3 := cosα sin θdφ. (4.2.1)

Observe that {b0, b1, b2, b3} is positively oriented with respect to the outward pointing
normal of S4, hence, the volume form is:

volS4 = sinα cos2 α sin θdα ∧ dβ ∧ dθ ∧ dφ.

4.2.2 Horizontal and the vertical space

As in [49, Subsection 5.2], we use Equation (2.3.1) to compute the ρi’s in the coordinate
frame we have just defined. Indeed, Eq. (4.2.1) implies that:

Ω1 = sinαdα ∧ dβ − cos2 α sin θdθ ∧ dφ,

Ω2 = cosαdα ∧ dθ − sinα cosα sin θdφ ∧ dβ,

Ω3 = cosα sin θdα ∧ dφ− sinα cosαdβ ∧ dθ;

(4.2.2)

hence, we deduce that:

dΩ1 = 2 sinα cosα sin θdα ∧ dθ ∧ dφ,

dΩ2 = (sin2 α− cos2 α) sin θdα ∧ dφ ∧ dβ − sinα cosα cos θdθ ∧ dφ ∧ dβ,

dΩ3 = cosα cos θdθ ∧ dα ∧ dφ+ (sin2 α− cos2 α)dα ∧ dβ ∧ dθ.

We conclude that in these coordinates we have:

2ρ1 = − cosαdβ + cos θdφ; 2ρ2 = sinαdθ; 2ρ3 = sinα sin θdφ.

Now that we have computed the connection forms, we immediately see from Eq. (2.3.2)
that the vertical one forms are:

ξ0 = da0 + a1

󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
+ a2

sinα

2
dθ + a3

sinα sin θ

2
dφ,

ξ1 = da1 − a0

󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
− a2

sinα sin θ

2
dφ+ a3

sinα

2
dθ,

ξ2 = da2 − a0
sinα

2
dθ + a1

sinα sin θ

2
dφ− a3

󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
,

ξ3 = da3 − a0
sinα sin θ

2
dφ− a1

sinα

2
dθ + a2

󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
.

(4.2.3)
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4.2.3 SU(2)-action

Given the splitting of Section 4.2.1, R5 = P ⊕ P⊥, since P ∼= R3 and P⊥ ∼= R2, we can
consider SO(3) acting in the usual way on P and trivially on P⊥. In other words, we see
SO(3) ∼= SO(P )× IdP⊥ ⊂ SO(P ⊕ P⊥) ∼= SO(5). Obviously, this is also an action on S4.

By taking the differential, SO(3) acts on the frame bundle PSO(4) of S4. The theory
of covering spaces implies that this action lifts to a Spin(3) ∼= SU(2)-action on the spin
structure PSpin(4) of S4. In particular, the following diagram is commutative:

PSpin(4)

Spin(3)× PSpin(4) SO(3)× PSO(4) PSO(4)

π̃

π̃3
0×π̃

. (4.2.4)

Finally, if Spin(3) acts trivially on H, we can combine the two Spin(3)-actions to obtain
one on PSpin(4) ×H, which descends to the quotient PSpin(4) ×µ− H = S/−(S

4).

Remark 4.2.1. Recall that TS4 = PSO(4) ×· R4, where · is the standard representation of
SO(4) on R4. Let G be a subgroup of SO(5) which acts on PSO(4)×·R4 via the differential
on the first term and trivially on the second. It is straightforward to verify that this
action passes to the quotient and that it coincides with the differential on TS4.

Now, we describe the geometry of this Spin(3)-action on S/−(S
4). Since π̃ is fibre-

preserving and (Eq. (4.2.4)) represents a commutative diagram, we observe that, fixed
a point p = (x,y) ∈ S4 ⊂ P ⊕ P⊥, the subgroup of Spin(3) that preserves the fibre of
PSpin(4) over p is the lift of the subgroup of SO(3) that fixes the fibre of PSO(4) over p.

We first assume α ∕= π/2. The subgroup of SO(3) that preserves the fibres of PSO(4)

rotates the tangent space of S2 ⊂ P and fixes the other vectors tangent to S4. Explicitly,
if {ei}3i=0 is the oriented orthonormal frame of Section 4.2.1 (or an analogous frame when
α = 0, θ = 0, π), the transformation matrix under the action is:

hγ :=

󰀵

󰀷
Id2

cos γ − sin γ
sin γ cos γ

󰀶

󰀸 ∈ SO(4), (4.2.5)

for some γ ∈ [0, 2π).

Claim 1. For all γ ∈ [0, 4π), under the isomorphism Spin(4) ∼= Sp(1)× Sp(1), we have:

π̃4
0(h̃γ) = hγ,

where h̃γ = (cos(γ/2) + i sin(γ/2), cos(γ/2) + i sin(γ/2)).
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Proof. It is well-known that, in this context, π̃4
0 ((l, r))·a = lar for all (l, r) ∈ Sp(1)×Sp(1)

and all a ∈ H ∼= R4. The claim follows from a straightforward computation.

Using once again the commutativity of (Eq. (4.2.4)) and Claim 1, we deduce that the
action in the trivialization of S/−(S

4) induced by {ei}3i=0 is as follows:

U ×H (U × Spin(4))×µ− H (U × Spin(4))×µ− H U ×H

(p, a)
󰀅
(p, 1Spin(4)), a

󰀆 󰀅
(p, h̃γ), a

󰀆 󰀓
p, aĥγ

󰀔

∼= ∼=

,

where ĥγ := cos(γ/2) − i sin(γ/2) and where a ∈ H. If we write both R2 factors of
H ∼= R2 ⊕ R2 in polar coordinates, i.e.,

a = s cos(γ−/2) + is sin(γ−/2) + jt cos(γ+/2) + kt sin(γ+/2),

for s, t ∈ [0,∞) and γ± ∈ [0, 4π), we observe that

aĥγ = s cos ((γ− − γ)/2) + is sin ((γ− − γ)/2) + jt cos ((γ+ + γ)/2) + kt sin((γ+ + γ)/2).

Geometrically, this is a rotation of angle −γ/2 on the first R2 and of angle γ/2 on the
second.

Now, we assume α = π/2. In this case, the whole Spin(3) fixes the fibre of S/−(S
4).

Claim 2. Spin(3) acts on the fibre of S/−(S
4) as Sp(1) acts on H via right multiplication

of the quaternionic conjugate.

Proof. Consider an orthonormal frame such that, at p = (0, cos β, sin β), has the form:

e0 = − sin β∂3 + cos β∂4; e1 = ∂0; e2 = ∂1; e3 = ∂2,

where ∂i are the coordinate vectors of R5 ∼= P ⊕P⊥. Observe that the SO(3)-action fixes
e0 and acts on e1, e2, e3 via matrix multiplication. In particular, given G ∈ SO(3), the
transformation matrix of the frame at p is:

󰀗
1

G

󰀘
.

Moreover, for all g ∈ Sp(1) ∼= Spin(3) and (g, g) ∈ Sp(1)× Sp(1) ∼= Spin(4), then

π̃4
0((g, g)) =

󰀗
1

π̃3
0(g)

󰀘
,
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where we recall that π̃3
0(l) · x = lxl for all l ∈ Sp(1) and x ∈ ImH ∼= R3. Indeed, the

left-hand side reads:

π̃4
0((g, g)) · a = gag = gRe(a)g + gIm(a)g = Re(a) + gIm(a)g,

while the right-hand side is:
󰀗
1

π̃3
0(g)

󰀘
a =

󰀕
Re(a)

gIm(a)g

󰀖
.

We conclude the proof through the commutativity of (Eq. (4.2.4)).

We put all these observations in a lemma.

Lemma 4.2.2. The orbits of the SU(2) ∼= Spin(3)-action on S/−(S
4) are given in Table

Table 4.1.

α (s, t) Orbit
∕= π

2
= (0, 0) S2

∕= π
2

∕= (0, 0) S3

= π
2

= (0, 0) Point
= π

2
∕= (0, 0) S3

Table 4.1: Spin(3) Orbits

4.2.4 SU(2) adapted coordinates

The description of the SU(2)-action that we carried out in Section 4.2.3 suggests the
following reparametrization of the linear coordinates (a0, a1, a2, a3) on the fibres of S/−(S

4):

a0 = s cos

󰀕
δ − γ

2

󰀖
; a1 = s sin

󰀕
δ − γ

2

󰀖
; a2 = t cos

󰀕
δ + γ

2

󰀖
; a3 = t sin

󰀕
δ + γ

2

󰀖
,

(4.2.6)

where s, t ∈ [0,∞), γ ∈ [0, 4π) and δ ∈ [0, 2π). This is a well-defined coordinate system
when s and t are strictly positive; we will assume this from now on. Geometrically, γ
represents the SU(2)-action, while δ can be either seen as the phase in the orbit of the
action when (a0, a1) = (s, 0) or as twice the common angle in [0, π) that the suitable
point in the orbit makes with (s, 0) and (t, 0). These interpretations can be recovered by
putting γ = δ and γ = 0, respectively.
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Similarly to [49], we introduce the standard left-invariant coframe on SU(2) of coor-
dinates γ, θ,φ defined on the same intervals as above:

σ1 = dγ + cos θdφ; σ2 = cos γdθ + sin γ sin θdφ; σ3 = sin γdθ − cos γ sin θdφ. (4.2.7)

Observe that:

σ2 ∧ σ3 = − sin θdθ ∧ dφ. (4.2.8)

Our choice of parametrization of S/−(S
4) implies that Eq. (4.2.7) is a coframe on the

3-dimensional orbits of the SU(2)-action.
So far, we have constructed a coordinate system α, β, θ,φ, s, t, δ, γ defining a chart U of

S/−(S
4) and a coframe {σ1, σ2, σ3, dα, dβ, ds, dt, dδ} on that chart. These coordinates and

coframe are such that γ, θ,φ parametrize the orbits of the SU(2)-action and {σ1, σ2, σ3}
forms a coframe on these orbits. Let {∂1, ∂2, ∂3, ∂α, ∂β, ∂s, ∂t, ∂δ} be the relative dual
frame.

4.2.5 Spin(7) geometry in the adapted coordinates

In this subsection, we write the Cayley form Φc, as in Eq. (2.3.3), and the relative metric
gc, as in Eq. (2.3.4), with respect to the SU(2) adapted coordinates defined in Section 4.2.4.

Lemma 4.2.3. The horizontal 2-forms Ω1, Ω2, Ω3, in the adapted frame defined in Sec-
tion 4.2.4, satisfy:

Ω1 = sinαdα ∧ dβ + cos2 ασ2 ∧ σ3

and

cos γΩ2 + sin γΩ3 = cosα(dα ∧ σ2 − sinαdβ ∧ σ3),

− sin γΩ2 + cos γΩ3 = cosα(−dα ∧ σ3 − sinαdβ ∧ σ2).

Proof. The equations follow from Eq. (4.2.2), Eq. (4.2.7) and Eq. (4.2.8).

Lemma 4.2.4. The vertical 2-forms A1, A2, A3, in the adapted frame defined in Sec-
tion 4.2.4, have the form:

A1 =
1

2
(sds− tdt) ∧ dδ +

cosα

2
(sds+ tdt) ∧ dβ − 1

2
(sds+ tdt) ∧ σ1

+
sinα

2
(tds− sdt) ∧ σ3 + (s2 + t2)

sin2 α

4
σ2 ∧ σ3 +

st sinα

2
σ2 ∧ dδ,
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A2 =cos γds ∧ dt− t

2
sin γds ∧ (dγ + dδ)− s

2
sin γdt ∧ (dδ − dγ)− st

2
cos γdγ ∧ dδ

− (s2 + t2)
sinα cosα

4
sin θdβ ∧ dφ+ sin γ(sdt− tds) ∧

󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖

+ st cos γdδ ∧
󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
+

sinα

2
dθ ∧ (tdt+ sds)

+
t2 sinα sin θ

4
(dγ + dδ) ∧ dφ+

s2 sinα sin θ

4
dφ ∧ (dδ − dγ);

A3 =sin γds ∧ dt+
t

2
cos γds ∧ (dγ + dδ) +

s

2
cos γdt ∧ (dδ − dγ) +

st

2
sin γdδ ∧ dγ

+ (s2 + t2)
sinα

4
(cosαdβ ∧ dθ + cos θdθ ∧ dφ)

− cos γ(sdt− tds) ∧
󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖

+ st sin γdδ ∧
󰀕
−cosα

2
dβ +

cos θ

2
dφ

󰀖
+

sinα sin θ

2
dφ ∧ (tdt+ sds)

+
t2 sinα

4
dθ ∧ (dγ + dδ) +

s2 sinα

4
(dδ − dγ) ∧ dθ.

(4.2.9)

Proof. Computing the exterior derivatives of the ai’s in the coordinates of Eq. (4.2.6), we
can reduce our statement to a long computation based on Eq. (4.2.3).

Corollary 4.2.5. The vertical 2-forms A1, A2, A3, in the adapted frame defined in Sec-
tion 4.2.4, satisfy:

A1 =

󰀕
ds+

t sinα

2
σ2

󰀖
∧
󰀕
s

2
dδ +

s cosα

2
dβ − s

2
σ1 +

t sinα

2
σ3

󰀖

−
󰀕
dt− s sinα

2
σ2

󰀖
∧
󰀕
t

2
dδ − t cosα

2
dβ +

t

2
σ1 +

s sinα

2
σ3

󰀖 (4.2.10)

and

cos γA2 + sin γA3 =

󰀕
ds+

t sinα

2
σ2

󰀖
∧
󰀕
dt− s sinα

2
σ2

󰀖

+

󰀕
s

2
dδ +

s cosα

2
dβ − s

2
σ1 +

t sinα

2
σ3

󰀖
∧

∧
󰀕
t

2
dδ − t cosα

2
dβ +

t

2
σ1 +

s sinα

2
σ3

󰀖
;

(4.2.11)

cos γA3 − sin γA2 =

󰀕
ds+

t sinα

2
σ2

󰀖
∧
󰀕
t

2
dδ − t cosα

2
dβ +

t

2
σ1 +

s sinα

2
σ3

󰀖

+

󰀕
dt− s sinα

2
σ2

󰀖
∧
󰀕
s

2
dδ +

s cosα

2
dβ − s

2
σ1 +

t sinα

2
σ3

󰀖
.

(4.2.12)
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Proof. The first equation in Lemma 4.2.4 is exactly the development of Eq. (4.2.10).
A straightforward computation, involving Eq. (4.2.9), gives:

cos γA2 + sin γA3 = ds ∧ dt+
st

2
dδ ∧ σ1 −

st

2
cosαdδ ∧ dβ + (s2 + t2)

sinα cosα

4
dβ ∧ σ3

+
sinα

2
σ2 ∧ (tdt+ sds) +

(t2 − s2) sinα

4
σ3 ∧ dδ

− (t2 + s2) sinα

4
σ1 ∧ σ3;

cos γA3 − sin γA2 =
1

2
(tds− sdt) ∧ σ1 +

1

2
(tds+ sdt) ∧ dδ + (s2 + t2)

sinα cosα

4
dβ ∧ σ2

+
cosα

2
(sdt− tds) ∧ dβ +

sinα

2
(tdt+ sds) ∧ σ3

− (s2 + t2) sinα

4
σ1 ∧ σ2 +

(t2 − s2) sinα

4
σ2 ∧ dδ;

which coincide with the development of Eq. (4.2.11) and Eq. (4.2.12), respectively.

Remark 4.2.6. Using the identities:

b0 ∧ b1 ∧ b2 ∧ b3 = −1

2
Ω1 ∧ Ω1,

ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 = −1

2
A1 ∧ A1

(4.2.13)

and
3󰁛

i=1

Ai ∧ Ωi =A1 ∧ Ω1 + (cos γΩ2 + sin γΩ3) ∧ (cos γA2 + sin γA3)

+ (− sin γΩ2 + cos γΩ3) ∧ (− sin γA2 + cos γA3),

(4.2.14)

one could easily find Φc in the adapted frame of Section 4.2.4. It is clear from Corol-
lary 4.2.5 that it is not going to be in a nice form.

Lemma 4.2.7. Given c ≥ 0, the Riemannian metric gc, in the adapted frame of Sec-
tion 4.2.4, takes the form:

gc =5(c+ r2)3/5
󰀃
dα2 + sin2 αdβ2 + cos2 α(σ2

2 + σ2
3)
󰀄

+ 4(c+ r2)−2/5

󰀕
ds2 + dt2 +

r2 cos2 α

4
dβ2 +

r2

4
σ2
1 −

r2 cosα

2
dβσ1 +

r2 sin2 α

4
(σ2

2 + σ2
3)

+
(t2 − s2)

2
dδσ1 + (st sinα)dδσ3 +

r2

4
dδ2 + sinα(tds− sdt)σ2 −

(t2 − s2) cosα

2
dδdβ

󰀖
,

where r2 = s2 + t2.

Proof. Combining Eq. (2.3.4), Eq. (4.2.1), Eq. (4.2.3) and Eq. (4.2.7)), it is easy to obtain
the Riemannian metric in the claimed form.
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4.2.6 Diagonalizing coframe and frame

In this subsection we define the last coframe on S/−(S
4) that we will use. The motivation

comes from the form of A1, cos γA2 + sin γA3 and cos γA3 − sin γA2 that we obtained in
Eq. (4.2.10), Eq. (4.2.11) and Eq. (4.2.12), respectively. We let:

d̃s = ds+
t sinα

2
σ2;

ω1 = sdδ + s cosαdβ − sσ1 + t sinασ3;

d̃t = dt− s sinα

2
σ2;

ω2 = tdδ − t cosαdβ + tσ1 + s sinασ3.

(4.2.15)

Since tω1 + sω2 = 2tsdδ + (t2 + s2) sinασ3 and sω2 − tω1 = 2stσ1 − 2st cosαdβ +

(s2 − t2) sinασ3, it is clear that {σ2, σ3, dα, dβ,ω1,ω2, d̃s, d̃t} is a coframe on U . Let
{e2, e3, eα, eβ, eω1 , eω2 , es, et} denote the relative dual frame.

Corollary 4.2.8. The vertical 2-forms A1, A2, A3, in the coframe defined in this subsec-
tion, satisfy:

A1 =
1

2

󰀓
d̃s ∧ ω1 − d̃t ∧ ω2

󰀔
(4.2.16)

and

cos γA2 + sin γA3 = d̃s ∧ d̃t+
1

4
ω1 ∧ ω2; (4.2.17)

cos γA3 − sin γA2 =
1

2

󰀓
d̃s ∧ ω2 + d̃t ∧ ω1

󰀔
. (4.2.18)

Proof. It follows immediately from Corollary 4.2.5 and Eq. (4.2.15).

Proposition 4.2.9. Given c ≥ 0, the Cayley form Φc, in the coframe defined in this
subsection, satisfies:

Φc =4(c+ r2)−4/5d̃s ∧ d̃t ∧ ω2 ∧ ω1 + 25(c+ r2)6/5 sinα cos2 αdα ∧ dβ ∧ σ3 ∧ σ2

10(c+ r2)1/5
󰀕󰀓

d̃s ∧ ω1 − d̃t ∧ ω2

󰀔
∧
󰀃
sinαdα ∧ dβ + cos2 ασ2 ∧ σ3

󰀄

+
1

2

󰀓
4d̃s ∧ d̃t+ ω1 ∧ ω2

󰀔
∧ (cosα(dα ∧ σ2 − sinαdβ ∧ σ3))

+
󰀓
d̃s ∧ ω2 + d̃t ∧ ω1

󰀔
∧ cosα (−dα ∧ σ3 − sinαdβ ∧ σ2)

󰀖
,

(4.2.19)

where r2 = s2 + t2.

Proof. This is a straightforward consequence of Lemma 4.2.3, Eq. (4.2.13), Eq. (4.2.14)
and Corollary 4.2.8.
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Proposition 4.2.10. Given c ≥ 0, the Riemannian metric gc, in the coframe defined in
this subsection, satisfies:

gc =5(c+ r2)3/5
󰀃
dα2 + sin2 αdβ2 + cos2 α

󰀃
σ2
2 + σ2

3

󰀄󰀄

+ 4(c+ r2)−2/5

󰀕
d̃s

2
+ d̃t

2
+

(ω2
1 + ω2

2)

4

󰀖
,

(4.2.20)

where r2 = s2 + t2.

Proof. The first addendum remains invariant from Lemma 4.2.7, while Eq. (4.2.15) implies
that the remaining part is equal to the second addendum in Lemma Lemma 4.2.7.

In particular, using this coframe, we sacrifice compatibility with the group action to
obtain a simpler form for Φc and a diagonal metric.

We conclude this subsection by computing the dual frame with respect to the SU(2)

adapted frame {∂1, ∂2, ∂3, ∂α, ∂β, ∂s, ∂t, ∂δ}.

Lemma 4.2.11. The dual frame {e2, e3, eα, eβ, eω1 , eω2 , es, et} satisfies:

eα = ∂α;

e2 = ∂2 −
t sinα

2
∂s +

s sinα

2
∂t;

es = ∂s;

eω1 =
1

2s
∂δ −

1

2s
∂1;

eβ = ∂β + cosα∂1;

e3 = ∂3 −
(s2 + t2) sinα

2st
∂δ +

(t2 − s2) sinα

2st
∂1;

et = ∂t;

eω2 =
1

2t
∂δ +

1

2t
∂1;

(4.2.21)

where {∂1, ∂2, ∂3, ∂α, ∂β, ∂s, ∂t, ∂δ} is the dual frame with respect to the SU(2) adapted
coordinates of Section 4.2.4.

Proof. It is straightforward to verify these identities from Eq. (4.2.15) and the definition
of dual frame.

4.2.7 Cayley condition

As the generic orbit of the SU(2)-action we are considering is 3-dimensional (see Lemma
Lemma 4.2.2), it is sensible to look for SU(2)-invariant Cayley submanifolds. Indeed,
Theorem 2.3.8 guarantees the local existence and uniqueness of a Cayley passing through
any given generic orbit. To construct such a submanifold N , we consider a 1-parameter
family of 3-dimensional SU(2)-orbits in M . Hence, the coordinates that do not describe
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the orbits, i.e. α, β, s, t and δ, need to be functions of a parameter τ . Explicitly, we have:

N =

󰀝󰀕
(cosα(τ)u, sinα(τ)v),

󰀕
(s(τ) cos

󰀕
δ(τ)− γ

2

󰀖
, s(τ) sin

󰀕
δ(τ)− γ

2

󰀖
,

t(τ) cos

󰀕
δ(τ) + γ

2

󰀖
, t(τ) sin

󰀕
δ(τ) + γ

2

󰀖󰀖󰀖
: |u| = |v| = 1, γ ∈ [0, 4π), τ ∈ (−󰂃, 󰂃)

󰀞
,

(4.2.22)
and its tangent space is spanned by: {∂1, ∂2, ∂3, ṡ∂s+ ṫ∂t+α̇∂α+β̇∂β+ δ̇∂δ}, where the dots
denotes the derivative with respect to τ . The Cayley condition imposed on this tangent
space (see Proposition 2.3.9) generates a system of ODEs in α, β, s, t, δ.

Proposition 4.2.12. Let N be an SU(2)-invariant submanifold as described at the be-
ginning of this subsection. Then, N is Cayley in the chart U , defined in Section 4.2.4, if
and only if the following system of ODEs is satisfied:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

(s2 + t2) sin2 α cosαβ̇ = 0

cos2 α(tṡ− sṫ) = 0

cos2 αstδ̇ = 0

5(c+ r2) cos2 αsα̇−r2 sin2 αα̇s+2 sinα cosαt2ṡ+4 cosα sinαs2ṡ+2 sinα cosαstṫ = 0

5(c+ r2) cos2 αtα̇−r2 sin2 αα̇t+2 sinα cosαs2ṫ+4 cosα sinαt2ṫ+2 sinα cosαstṡ = 0

5(c+ r2) sinα cos2 αβ̇s− 2 sinα cosαt2sδ̇ − r2 sin3 αβ̇s = 0

− 5(c+ r2) sinα cos2 αβ̇t− 2 sinα cosαts2δ̇ + r2 sin3 αβ̇t = 0

,

(4.2.23)
where r2 = s2 + t2 as usual.

4.2.7.1 Proof of Proposition 4.2.12

In this subsection, we prove Proposition 4.2.12. First, we need to rewrite the tangent
space of N in the diagonalizing frame of Section 4.2.6.

Lemma 4.2.13. The tangent space of N is spanned by:

u := teω2 − seω1 , v := e2 +
sinα

2
(tes − set), w := e3 + sinα (teω1 + seω2)

and
y := ṡes + ṫet + α̇eα + β̇eβ + δ̇ (seω1 + teω2) .

Moreover, through the musical isomorphism, we have:

u
Z
= (c+ r2)−2/5(tω2 − sω1), v

Z
= 5(c+ r2)3/5 cos2 ασ2 + 2(c+ r2)−2/5 sinα(td̃s− sd̃t),
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w
Z
= 5(c+ r2)3/5 cos2 ασ3 + (c+ r2)−2/5 sinα (tω1 + sω2)

and

y
Z
= 5(c+ r2)3/5(α̇dα + sin2 αβ̇dβ) + 4(c+ r2)−2/5(ṡd̃s+ ṫd̃t) + (c+ r2)−2/5δ̇(sω1 + tω2),

where r2 = s2 + t2.

Proof. One can immediately see from Lemma 4.2.11 that ∂1 = u, ∂2 = v and ∂δ =

seω1 + teω2 . We use these equality to obtain:

(s2 + t2)∂δ − (t2 − s2)∂1 = (s2 + t2)(seω1 + teω2)− (t2 − s2)(teω2 − seω1)

= 2st(teω1 + seω2),

which implies that ∂3 = w. We conclude noticing that ṡ∂s + ṫ∂t + α̇∂α + β̇∂β + δ̇∂δ =

y − β̇ cosα∂1, where we used once again Lemma 4.2.11. Obviously, the space spanned by
{u, v, w, y} coincides with the one spanned by {u, v, w, y − β̇ cosα∂1}.

The second part of the Lemma follows immediately from Proposition 4.2.10, where we
proved that the metric is diagonal in this frame.

Let B be as in Proposition 2.3.9. We compute the terms of B in the basis {u, v, w, y}.
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Lemma 4.2.14. Let u, v, w, y as in Lemma 4.2.13. Then, we have:

B(v, w, y) = 25(c+ r2)6/5 sinα cos2 α(β̇dα− α̇dβ)

+ 2 sin2 α(c+ r2)−4/5
󰀓
(tṫ+ sṡ)(tω2 − sω1)− (t2 − s2)δ̇(td̃t+ sd̃s)

󰀔

+ 5(c+ r2)1/5
󰀕
2 cos2 α

󰀃
ṡω1 − ṫω2 + δ̇(td̃t− sd̃s)

󰀄

+ 2 cos2 α sinα(tsδ̇σ2 + (sṫ− tṡ)σ3) + (s2 + t2) sin3 α(α̇dβ − β̇dα)

+ 2 sinα cosα
󰀓
(s2 − t2)δ̇dα + α̇(tω2 − sω1)

󰀔

+ 4 cosα sin2 α
󰀓
β̇(sd̃s+ td̃t)− (sṡ+ tṫ)dβ

󰀔󰀖
,

B(w, u, y) = 4(c+ r2)−4/5(t2 + s2) sinα(ṫd̃s− ṡd̃t)

+ 5(c+ r2)1/5
󰀃
− 2 cos2 α(sṡ+ tṫ)σ2 − 2 cosα sinαstδ̇dβ

+ cosα sinαβ̇(tω1 + sω2) + 2 cosα(sṫ− tṡ)dα + 2 cosαα̇(td̃s− sd̃t)

+ cosα sinα(t2 + s2)α̇σ2 − cosα sin2 α(t2 + s2)β̇σ3

󰀄
,

B(u, v, y) = 2(c+ r2)−4/5 sinα(−2δ̇st(td̃t+ sd̃s) + (tṫ+ sṡ)(tω1 + sω2))

+ 5(c+ r2)1/5
󰀃
− 2 cos2 α(sṡ+ tṫ)σ3 − 2 cosαstδ̇dα + cosαα̇(sω2 + tω1)

+ 2 cosα sinα(tṡ− sṫ)dβ + 2 cosα sinαβ̇(sd̃t− td̃s)

+ (s2 + t2) cosα sinαα̇σ3 + (s2 + t2) cosα sin2 αβ̇σ2

󰀄
,

B(v, u, w) = 2(c+ r2)−4/5 sin2 α(t2 + s2)(td̃t+ sd̃s)

+ 10(c+ r2)1/5
󰀃
− cos2 α(sd̃s+ td̃t) + sinα cosα(t2 + s2)dα

󰀄
,

where B is defined in Proposition 2.3.9 and r2 = s2 + t2.

Proof. The multilinearity of the Cayley form Φc implies that the same property holds for
B. Now, expanding the formula (Eq. (4.2.19)) for Φc, we obtain:

Φc =4(c+ r2)−4/5d̃s ∧ d̃t ∧ ω2 ∧ ω1 + 25(c+ r2)6/5 sinα cos2 αdα ∧ dβ ∧ σ3 ∧ σ2

10(c+ r2)1/5
󰀕
sinαd̃s ∧ ω1 ∧ dα ∧ dβ + cos2 αd̃s ∧ ω1 ∧ σ2 ∧ σ3

− sinαd̃t ∧ ω2 ∧ dα ∧ dβ − cos2 αd̃t ∧ ω2 ∧ σ2 ∧ σ3 + 2 cosαd̃s ∧ d̃t ∧ dα ∧ σ2

+
cosα

2
ω1 ∧ ω2 ∧ dα ∧ σ2 −

cosα sinα

2
ω1 ∧ ω2 ∧ dβ ∧ σ3 − cosαd̃s ∧ ω2 ∧ dα ∧ σ3

− 2 cosα sinαd̃s ∧ d̃t ∧ dβ ∧ σ3 − cosα sinαd̃s ∧ ω2 ∧ dβ ∧ σ2

− cosαd̃t ∧ ω1 ∧ dα ∧ σ3 − cosα sinαd̃t ∧ ω1 ∧ dβ ∧ σ2

󰀖
.

It is straightforward to conclude using the definition of B.
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Consider the two-form given in Proposition 2.3.9 that projects to η through π7. The
summands of such two form can be computed through a direct computation involving the
terms obtained in Lemma 4.2.13 and Lemma 4.2.14.

Corollary 4.2.15. Let u, v, w, y as in Lemma 4.2.13 and let Ψ1 := u
Z ∧B(v, w, y), Ψ2 =

v
Z ∧ B(w, u, y), Ψ3 = w

Z ∧ B(u, v, y), Ψ4 = y
Z ∧ B(v, u, w), where B is as defined in

Proposition 2.3.9. Then, we have:

Ψ1 = 25(c+ r2)4/5 sinα cos2 α(tω2 − sω1) ∧ (β̇dα− α̇dβ)

− (c+ r2)−6/52 sin2 α(t2 − s2)δ̇(tω2 − sω1) ∧ (td̃t+ sd̃s)

+ 5(c+ r2)−1/5

󰀕
2 cos2 α

󰀓
(tṡ− sṫ)ω2 ∧ ω1 + δ̇(tω2 − sω1) ∧ (td̃t− sd̃s)

󰀔

+ 2 sinα cos2 α
󰀓
tsδ̇(tω2 − sω1) ∧ σ2 + (sṫ− tṡ)(tω2 − sω1) ∧ σ3

󰀔

+ 2 sinα cosα(s2 − t2)δ̇(tω2 − sω1) ∧ dα

+ (t2 + s2) sin3 α(tω2 − sω1) ∧ (α̇dβ − β̇dα)

+ 4 cosα sin2 α
󰀓
β̇(tω2 − sω1) ∧ (sd̃s+ td̃t)− (sṡ+ tṫ)(tω2 − sω1) ∧ dβ

󰀔󰀖
,

Ψ2 = 25(c+ r2)4/5
󰀕
− 2 cos3 α sinαstδ̇σ2 ∧ dβ + cos3 α sinαβ̇σ2 ∧ (tω1 + sω2)

+ 2 cos3 α(sṫ− tṡ)σ2 ∧ dα + 2 cos3 αα̇σ2 ∧ (td̃s− sd̃t)

− cos3 α sin2 α(t2 + s2)β̇σ2 ∧ σ3

󰀖

+ 10(c+ r2)−1/5

󰀕
2 sinα cos2 α(t2 + s2)σ2∧(ṫd̃s− ṡd̃t)

− 2 cosα sin2 αstδ̇(td̃s− sd̃t) ∧ dβ + cosα sin2 αβ̇(td̃s− sd̃t) ∧ (tω1 + sω2)

+ 2 cosα sinα(sṫ− tṡ)(td̃s− sd̃t) ∧ dα− cosα sin2 α(ts + s2)α̇σ2 ∧ (td̃s− sd̃t)

+ cosα sin3 α(t2 + s2)β̇σ3 ∧ (td̃s− sd̃t)

󰀖

+ 8(c+ r2)−6/5 sin2 α(t2 + s2)(sṫ− tṡ)d̃s ∧ d̃t,
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Ψ3 = 25(c+ r2)4/5
󰀕
− 2 cos3 αstδ̇σ3 ∧ dα + cos3 αα̇σ3 ∧ (sω2 + tω1)

+ 2 cos3 α sinα(tṡ− sṫ)σ3 ∧ dβ + 2 cos3 α sinαβ̇σ3 ∧ (sd̃t− td̃s)

+ (s2 + t2) cos3 α sin2 αβ̇σ3 ∧ σ2

󰀖

− 4(c+ r2)−6/5 sin2 αδ̇st(tω1 + sω2) ∧ (td̃t+ sd̃s)

+ 5(c+ r2)−1/5

󰀕
2 sinα cos2 α

󰀓
(tṫ+ sṡ)σ3 ∧ (tω1 + sω2)− 2δ̇stσ3 ∧ (td̃t+ sd̃s)

󰀔

− 2 sinα cos2 α(sṡ+ tṫ)(tω1 + sω2) ∧ σ3 − 2 cosα sinαstδ̇(tω1 + sω2) ∧ dα

+ 2 cosα sin2 α(tṡ− sṫ)(tω1 + sω2) ∧ dβ + 2 cosα sin2 αβ̇(tω1 + sω2) ∧ (sd̃t− td̃s)

+ (s2 + t2) cosα sin2 αα̇(tω1 + sω2) ∧ σ3 + (s2 + t2) cosα sin3 αβ̇(tω1 + sω2) ∧ σ2

󰀖
,

Ψ4 = 2(c+ r2)−6/5 sin2 α(t2 + s2)
󰀓
δ̇(sω1 + tω2) ∧ (td̃t+ sd̃s) + 4(ṫs− ṡt)d̃t ∧ d̃s

󰀔

+ 50(c+ r2)4/5
󰀕
− cos2 α(α̇dα + sin2 αβ̇dβ) ∧ (sd̃s+ td̃t)

+ cosα sin3 α(t2 + s2)β̇dβ ∧ dα

󰀖

+ 10(c+ r2)−1/5

󰀕
sin2 α(t2 + s2)(α̇dα + sin2 αβ̇dβ) ∧ (td̃t+ sd̃s)

− 4 cos2 α(ṡt− ṫs)d̃s ∧ d̃t

+ 4 sinα cosα(t2 + s2)(ṡd̃s+ ṫd̃t) ∧ dα− cos2 αδ̇(sω1 + tω2) ∧ (sd̃s+ td̃t)

+ sinα cosα(t2 + s2)δ̇(sω1 + tω2) ∧ dα

󰀖
,

where r2 = s2 + t2.
Moreover,

η = π7(Ψ1 +Ψ2 +Ψ3 +Ψ4),

where η and π7 are defined in Proposition 2.3.9.

Finally, we turn our attention to the map π7. As recalled in Remark 2.3.10, this map
is the projection to the linear subspace Λ2

7 of the space of 2-forms on M .

Lemma 4.2.16. In the coframe {σ2, σ3, dα, dβ,ω1,ω2, d̃s, d̃t}, a basis for Λ2
7 is given by
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the following 2-forms:

λ1 := − cosασ2 ∧ ω1 + dα ∧ ω2 + 2 sinαdβ ∧ d̃t+ 2 cosασ3 ∧ d̃s,

λ2 := cosασ2 ∧ ω2 + dα ∧ ω1 − 2 sinαdβ ∧ d̃s+ 2 cosασ3 ∧ d̃t,

λ3 := cosασ3 ∧ ω1 + sinαdβ ∧ ω2 + 2 cosασ2 ∧ d̃s− 2dα ∧ d̃t,

λ4 := − cosασ3 ∧ ω2 + sinαdβ ∧ ω1 + 2 cosασ2 ∧ d̃t+ 2dα ∧ d̃s,

λ5 := 5(c+ r2) cosασ3 ∧ dα + 5(c+ r2) sinα cosασ2 ∧ dβ + 2ω2 ∧ d̃s+ 2ω1 ∧ d̃t,

λ6 := 5(c+ r2) sinα cosασ3 ∧ dβ − 5(c+ r2) cosασ2 ∧ dα + ω2 ∧ ω1 + 4d̃t ∧ d̃s,

λ7 := 5(c+ r2) sinαdβ ∧ dα + 5(c+ r2) cos2 ασ3 ∧ σ2 + 2d̃s ∧ ω1 − 2d̃t ∧ ω2.

Proof. Using the explicit formula for π7 given in Proposition 2.3.9, it is easy to verify that
π7(λi) = λi for all i = 1...7. We deduce that the λis form a basis of Λ7

2 as they are linearly
independent and the dimension of Λ7

2 is 7.

At this point, the proof of Proposition 4.2.12 follows easily. Indeed, we can rewrite
the sum of the Ψi given in Corollary 4.2.15 as follows:

Ψ1 +Ψ2+Ψ3 +Ψ4 =

=5(c+ r2)−1/5
󰀓
−5(c+ r2) sinα cos2 αβ̇t+ r2 sin3 αβ̇t− 2 sinα cosαts2δ̇

󰀔
λ1

+ 5(c+ r2)−1/5
󰀓
5(c+ r2) sinα cos2 αβ̇s−r2 sin3 αβ̇s− 2 sinα cosαt2sδ̇

󰀔
λ2

+ 5(c+ r2)−1/5

󰀕
5(c+ r2) cos2 αtα̇ + 4 cosα sinαt2ṫ+ 2 sinα cosαstṡ

+ 2 sinα cosαs2ṫ− r2 sin2 αα̇t

󰀖
λ3 + 5(c+ r2)−1/5

󰀕
− 5(c+ r2) cos2 αsα̇

− 4 cosα sinαs2ṡ− 2 sinα cosαstṫ− 2 sinα cosαt2ṡ+ r2 sin2 αα̇s

󰀖
λ4

− 2 cos2 αstδ̇
󰀃
25(c+ r2)−1/5λ5

󰀄

+ 2 cos2 α(tṡ− sṫ)
󰀃
25(c+ r2)−1/5λ6

󰀄

+ 2(s2 + t2) sin2 α cosαβ̇
󰀃
25(c+ r2)−1/5λ7

󰀄
.

From Corollary 4.2.15 and Lemma 4.2.16, we deduce the ODEs of Proposition 4.2.12.

Corollary 4.2.17. Let N be an SU(2)-invariant submanifold as described at the beginning
of this subsection. Then, N is Cayley in the chart U , defined in Section 4.2.4, if and only
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if the following system of ODEs is satisfied:
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

β̇ = 0

(tṡ− sṫ) = 0

δ̇ = 0

5(c+ r2) cos2 αstα̇− (s2 + t2)st sin2 αα̇ + 2 sinα cosα(s2 + t2)(sṫ+ tṡ) = 0

,

where r2 = s2 + t2 as usual.

Proof. As α ∈ (0, π/2) and s, t > 0, we get immediately the first three equations from the
first three equations of Eq. (4.2.23). The last two equations of Eq. (4.2.23) are superfluous
as β̇ = 0 and δ̇ = 0. The same holds for t times the fourth equation plus s times the fifth
equation of Eq. (4.2.23), where we use tṡ− sṫ = 0 this time. We conclude by considering
s times the fifth equation minus t times the fourth equation of Eq. (4.2.23).

4.2.8 Cayley fibration

In the previous section we found the condition that makes N , SU(2)-invariant submanifold,
a Cayley submanifold. Explicitly, it consists of a system of ODEs that is completely
integrable; these solutions will give us the desired fibration.

Proposition 4.2.18. Let N be an SU(2)-invariant submanifold as described at the begin-
ning of Section 4.2.7. Then, N is Cayley in U , defined in Section 4.2.4, if and only if the
following quantities are constant:

β, δ,
s

t
, F := 2 sin5/2 α cos1/2 αst+ 5c

st

(s2 + t2)
H(α),

where H(α) is the primitive function of h(α) := (cosα sinα)3/2.

Proof. The condition on β and δ follows immediately from Corollary 4.2.17. Taking the
derivative in τ of s/t, we see that

0 =
d

dτ

󰀓s
t

󰀔
=

ṡt− ṫs

t2
,

which is equivalent to the second equation in Corollary 4.2.17, as t > 0. Analogously, one
can see that the derivative with respect to τ of F is equivalent to the last equation of
Corollary 4.2.17 if we assume that s/t is constant.

Setting
v :=

s

t
, u := st,
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(a) Level sets of F with c = 1 and v = 1 (b) Level sets of F with c = 0 and v = 1

Figure 4.1: Level sets of F in the generic and in the conical case

the preserved quantities transform to:

β, δ, v, F := 2 sin5/2 α cos1/2 α(v2 + 1)u+ 5cvH(α),

where we multiplied F by the constant (v2 + 1). Observe that this is an admissible
transformation from s, t ∈ (0,∞) to u, v ∈ (0,∞). Moreover, fixed β, δ, v, we can represent
the SU(2)-invariant Cayley submanifolds as the level sets of F reckoned as a R-valued
function of α and u. An easy analysis of F shows that these level sets can be represented
as in Fig. 4.1. The dashed lines in the two graphs correspond to the curves formed by the
u-minimums of each level set and to the two vertical lines: α = arccos(1/

√
6). For c = 0,

these coincide, while in the generic case the locus of the u-minimum is:

α = arccos

󰀣󰁶
u(v2 + 1)

6u(v2 + 1) + 5cv

󰀤
,

which is only asymptotic to α = arccos(1/
√
6) for u → ∞.

The conical version. We first consider the easier case, i.e. when c = 0. It is clear
from the graph that the SU(2)-invariant Cayleys passing through U are contained in U ,
have topology S3 × R and are smooth. Moreover, we can construct a Cayley fibration
on the chart U with base an open subset of R4. To do so, we associate to each point of
U the value of β, δ, s/t and F of the Cayley passing through that point. This SU(2)-
invariant fibration naturally extends to the whole M0 via continuity. Using Table 4.1
and Theorem 2.3.8, we can describe the extension precisely. Indeed, when α = π/2,
the fibres of πS4 are SU(2)-invariant Cayley submanifolds; when α ∕= π/2 and s = 0 or
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t = 0, the suitable Cayley submanifolds constructed by Karigiannis and Min-Oo [50] are
SU(2)-invariant; finally, when α = 0 and (s, t) ∕= 0, the fibres are given by an extension
of [48]. We recall that the Karigiannis–Min-Oo Cayley submanifolds are constructed as
vector subbundles of S/−(S

4) over a minimal surface of S4. The topology of these Cayley
submanifolds that are not contained in U is R4 \ {0} in the first case and R × S3 in the
remaining ones. Observe that this fibration does not admit singular or intersecting fibres.

The smooth version. Now, we consider the generic case, i.e. when c > 0. Dif-
ferently from the cone, the graph of the level sets of F shows that the SU(2)-invariant
Cayley submanifolds passing through U do not remain contained in it, and they admit
three different topologies in the extension. The red, black and blue lines correspond to
submanifolds with topology R× S3, R4 and OCP1(−1), respectively. We define an SU(2)-
invariant Cayley fibration on U that extends to the whole M exactly as above. If we fix
a value of F corresponding to a Cayley of topology OCP1(−1), then, for every δ, v, all the
different Cayleys will intersect in a CP1 ⊂ S4, where S4 is the zero section of S/−(S

4).
The parametrizing space. Using Fig. 4.1, we can study the parametrizing space

B of the Cayley fibrations we have just described. We will only deal with the smooth
version, as the conical case is going to be completely analogous.

Ignoring β for a moment, it is immediate to see that, if we restrict our attention to the
fibres that are topologically OCP1(−1) and the ones corresponding to the black line, the
parametrizing space is homeomorphic to S2×[0, 1]. The remaining fibres are parametrized
by B3(1), open unit ball of R3. As we removed the zero section of S/−(S

4), it is clear that
we can glue these partial parametrizations together to obtain B3(2). Now, β gives a circle
action on B3(2) that vanishes on its boundary. We conclude that the parametrizing space
B of the smooth Cayley fibration is S4. Indeed, this is essentially the same way to describe
S4 as we did in Section 4.2.1.

The smoothness of the fibres (the asymptotic analysis as r → 0). In this
subsection, we study the smoothness of the fibres. Observe that this property is obviously
satisfied as long as they are contained in the chart U . Hence, the Cayleys of topology
S3×R are smooth, and we only need to check the remaining ones in the points where they
meet the zero section, i.e., when the SU(2) group action degenerates. To this purpose, we
carry out an asymptotic analysis.

Let β0, v0, δ0 and F0 be the constants determining a Cayley fibre N . By the explicit
formula for F , we see that N is given by:

u =
F0 − 5cv0H(α)

2 sin5/2 α cos1/2 α(v20 + 1)
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α

u

π
2

α0

N

Σ

Figure 4.2: Approximation of a Cayley at u = 0 when α0 ∈ (0, π/2)

We first check the smoothness of the fibres that meet the zero section (u = 0) at some
α0 ∈ (0, π/2), i.e., the ones of topology OCP1(−1). For this purpose, if we expand near
α−
0 and we obtain the linear approximation of N at that point. Explicitly, this is the

SU(2)-invariant 4-dimensional submanifold Σ characterized by the equation

u = − 5cv0
2 tanα0(v20 + 1)

(α− α0),

and where v, δ, β are constantly equal to v0, δ0, β0.
Now, we want to study the asymptotic behaviour of the metric gc when restricted to

Σ, and then, we let α tends to α0 from the left. To do so, it is convenient to compute the
following identities using the definition of u := st and v := s/t:

dt =
1

2
√
uv

du− 1

2v

󰁵
u

v
dv,

ds =

√
v

2
√
u
du+

√
u

2
√
v
dv,

ds2 =
v

4u
du2 +

u

4v
dv2 +

1

2
dudv,

dt2 =
1

4uv
du2 +

u

4v3
dv2 − 1

2v2
dudv.

(4.2.24)
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The metric gc, in the coframe {σ1, σ2, σ3, dα, dβ, du, dv, dδ}, then can be rewritten as:

gc =5
󰀓
c+

u

v
(1 + v2)

󰀔3/5 󰀃
dα2 + sin2 αdβ2 + cos2 α(σ2

2 + σ2
3)
󰀄

+ 4
󰀓
c+

u

v
(1 + v2)

󰀔−2/5
󰀕

1

4uv
(1 + v2)du2 +

u

4v3
(1 + v2)dv2 +

1

2v2
(v2 − 1)dudv

+
u

v
(1 + v2)

cos2 α

4
dβ2 +

u

4v
(1 + v2)σ2

1 −
cosα

2

u

v
(1 + v2)dβσ1

+
u

v
(1 + v2)

sin2 α

4
(σ2

2 + σ2
3) +

u(1− v2)

2v
dδσ1 + u sinαdδσ3 +

u

4v
(1 + v2)dδ2

+ sinα
u

v
dvσ2 −

u(1− v2) cosα

2v
dδdβ

󰀖
,

(4.2.25)
where we used Eq. (4.2.24) and Lemma 4.2.7. Now, if we restrict Eq. (4.2.25) to Σ, and
we let α tend to α0 from the left, we get:

gc
󰀏󰀏
N
∼ c−2/5

v0
(1 + v20)

󰀕
du2

u
+ uσ2

1

󰀖
+ 5c3/5 cos2 α0(σ

2
2 + σ2

3)

∼ dr2 + r2
σ2
1

4
+ 5c3/5 cos2 α0(σ

2
2 + σ2

3),

where

r =

󰁶
1 + v20
v0c2/5

2
√
u.

As the length of σ1 is 4π, we deduce that the metric gc extends smoothly to the CP1 ∼= S2

contained in the zero section. This two-dimensional sphere corresponds to the base of the
bundle OCP1(−1).

Finally, we check the smoothness of the fibres meeting the zero section at α0 = π/2,
i.e., the ones with topology R4. Expanding for α → π/2−, we immediately see that the
first order is not enough and we need to pass to second order. Explicitly, this is the
SU(2)-invariant 4-dimensional submanifold Σ of equation:

u = A(α− π/2)2,

where A := cv(1 + v2)−1 is the constant depending on c, v determined by the expansion.
As above, the remaining parameters v, δ, β are constantly equal to v0, δ0, β0. If we restrict
gc as defined in Eq. (4.2.25) to Σ, and we let α tend to π/2, then, we obtain:

gc
󰀏󰀏
N
∼ 5c3/5(α− π/2)2(σ2

2 + σ2
3) + Ac−2/5

󰀕
1 + v2

v

󰀖
(α− π/2)2(σ2

1 + σ2
2 + σ2

3)

+

󰀕
5c3/5 + 4Ac−2/51 + v2

v

󰀖
dα2

∼ c3/5(α− α0)
2
󰀃
σ2
1 + 6(σ2

2 + σ2
3)
󰀄
+ 9c3/5dα2,
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Figure 4.3: Approximation of a Cayley at u = 0 when α0 = π/2

where we also used the expansion of cosα around π/2 and the explicit value of A. We
conclude that N is not smooth when it meets the zero section, and it develops an asymp-
totically conical singularity at that point.

Remark 4.2.19. The singularity is asymptotic to the Lawson–Osserman cone [55].

The main theorems We collect all these results in the following theorems. Observe
that we are using the notion of Cayley fibration given in Definition 3.1.5.

Theorem 4.2.20 (T. [71]; Generic case). Let (M,Φc) be the Bryant–Salamon manifold
constructed over the round sphere S4 for some c > 0, and let SU(2) act on M as in
Section 4.2.3. Then, M admits an SU(2)-invariant Cayley fibration parametrized by B ∼=
S4. The fibres are topologically OCP1(−1), S3 × R and R4. Apart from the non-vertical
fibres of topology R4, all the others are smooth. The singular fibres of the Cayley fibration
have a conically singular point and are parametrized by (B◦)c ∼= S2 × S1 (β, δ, v in our
description). Moreover, at each point of the zero section S4 ⊂ S/−(S

4), infinitely many
Cayley fibres intersect.

Theorem 4.2.21 (T. [71]; Conical case). Let (M0,Φ0) be the conical Bryant–Salamon
manifold constructed over the round sphere S4, and let SU(2) act on M0 as in Sec-
tion 4.2.3. Then, M0 admits an SU(2)-invariant Cayley fibration parametrized by B ∼= S4.
The fibres are topologically S3×R and are all smooth. Moreover, as these do not intersect,
the SU(2)-invariant Cayley fibration is a fibration in the usual differential geometric sense
with fibres Cayley submanifolds.

Remark 4.2.22. It is interesting to observe that, in the generic case, the family of singular
R4s separates the fibres of topology S3 × R from the ones of topology OCP1(−1).

Remark 4.2.23. Similarly to [49, Subsection 5.11.1], one can blow-up at the north pole
and argue that in the limit the Cayley fibration splits into the product of a line R and
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(a) Level sets of ν1 with v = 1 (b) Level sets of ν0 with v = 1

Figure 4.4: Level sets of the multi-moment map in the generic and conical case

of an SU(2)-invariant coassociative fibration on R7. By the uniqueness of the SU(2)-
invariant coassociative fibrations of R7, we deduce that the latter is the Harvey and
Lawson coassociative fibration [37, Section IV.3] up to a reparametrization.

Remark 4.2.24. From the computations that we have carried out, it is easy to give an
explicit formula for the multi-moment map νc associated to this action. Indeed, this is:

νc =5(c+ s2 + t2)1/5
󰀕
(s2 + t2) cos2 α− 1

6
(s2 + t2 − 5c)

󰀖
− 25

6
c6/5 c ≥ 0.

Obviously, the range of νc is the whole R. Under the usual transformation u = st and
v = s/t, the multi-moment map becomes:

νc =
5

6

󰀕
c+

u(1 + v2)

v

󰀖1/5 󰀕
6
u(1 + v2)

v
cos2 α− u(1 + v2)

v
+ 5c

󰀖
− 25

6
c6/5.

We draw the level sets of νc in Figure Fig. 4.4.
The black lines correspond to the level set relative to zero, the red lines correspond to

negative values, while the blue lines correspond to the positive ones.
Differently from the conical case, the 0-level set of νc for c > 0 does not coincide with

the locus of u-minimum of each level set of F . Moreover, for every c ≥ 0, it does not even
coincide with the set of SU(2)-orbits of minimum volume in each fibre.

Asymptotic geometry as r → ∞. Inspecting the geometry of the Cayley fibration
(see Fig. 4.1), we deduce that there are two asymptotic behaviours for the fibres: one for
α ∼ 0 and one for α ∼ π/2. In both cases, as u → ∞, the tangent space of the Cayley

74



fibre N tends to be spanned by ∂u, ∂1, ∂2, ∂3. We can use the formula for the metric
(Eq. (4.2.25)) to obtain, for α ∼ 0:

gc
󰀏󰀏
N
∼ 5

󰀕
1 + v2

v

󰀖3/5

u3/5(σ2
2 + σ2

3) + u−2/5

󰀕
1 + v2

v

󰀖−2/5 󰀕
1 + v2

v

󰀖󰀕
du2

u
+ uσ2

1

󰀖

=

󰀕
1 + v2

v

󰀖3/5 󰀃
u3/5(5(σ2

2 + σ2
3) + σ2

1) + u−7/5du2
󰀄

= dr2 +
9

25
r2
(σ2

1 + 5(σ2
2 + σ2

3))

4
,

and, for α ∼ π/2:

gc
󰀏󰀏
N
∼

󰀕
1 + v2

v

󰀖3/5 󰀃
u3/5(σ2

1 + σ2
2 + σ2

3) + u−7/5du2
󰀄

= dr2 +
9

25
r2
(σ2

1 + σ2
2 + σ2

3)

4
,

where, in both cases,

r :=
10

3

󰀕
1 + v2

v

󰀖3/10

u3/10.

When α ∼ π/2, the link S3 is endowed with the round metric, while, when α ∼ 0, the
round sphere is squashed by a factor 1/5.

Remark 4.2.25. Observe that 1/5 is also the squashing factor on the round metric of S7

that makes the space homogeneous, non-round and Einstein. It is well-known that there
are no other metrics satisfying these properties [73].

4.3 Cayley fibration invariant under the lift of the Sp(1)×
Id1-action on S4

Let M := S/−(S
4) and M0 := R+×S7 be endowed with the torsion-free Spin(7)-structures

Φc constructed by Bryant and Salamon that we described in Section 2.3.3. On each
Spin(7) manifold, we construct the Cayley Fibration which is invariant under the lift to
M (or M0) of the standard (left multiplication) Sp(1)× Id1-action on S4 ⊂ H⊕ R.

Remark 4.3.1. The exact same computations will work for the Sp(1) × Id1-action given
by right multiplication of the quaternionic conjugate. In this case, the role of the north
and of the south pole will be interchanged.
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4.3.1 Choice of coframe on S4

As in Section 4.2, we choose an adapted orthonormal coframe on S4 which is compatible
with the symmetries we will impose.

Consider R5 as the sum of a 4-dimensional space P ∼= H and its orthogonal complement
P⊥ ∼= R. With respect to this splitting, we can write the 4-dimensional unit sphere in
the following fashion:

S4 =
󰀋
(x, y) ∈ P ⊕ P⊥ : |x|2 + |y|2 = 1

󰀌
.

Now, for all (x, y) ∈ S4 there exists a unique α ∈ [−π/2, π/2] such that

x = cosαu, y = sinα,

for some u ∈ S3. Note that u is uniquely determined when α ∕= ±π/2. Essentially, we
are writing S4 as a 1-parameter family of S3s that are collapsing to a point on each end
of the parametrization.

Let {∂1, ∂2, ∂3} be the standard left-invariant orthonormal frame on S3 ∼= Sp(1). Con-
sidering this frame in the description of S4 above, we deduce that

f0 := ∂α, f1 :=
∂1

cosα
, f2 :=

∂2
cosα

, f3 :=
∂3

cosα
,

is an oriented orthonormal frame of S4 \ {α = ±π/2}. The dual coframe is:

b0 := dα; b1 := cosασ1; b2 := cosασ2; b3 := cosασ3, (4.3.1)

where {σi}3i=1 is the dual coframe of {∂i}3i=1 in S3, which is well-known to satisfy:

d

󰀳

󰁃
σ1

σ2

σ3

󰀴

󰁄 = 2

󰀳

󰁃
σ2 ∧ σ3

σ3 ∧ σ1

σ1 ∧ σ2

󰀴

󰁄 . (4.3.2)

We deduce that the round metric on the unit sphere S4 can be written as:

gS4 = dα2 + cos2 αgS3 ,

and the volume form is:

volS4 = cos3 αdα ∧ volS3 ,

where gS3 = σ2
1 + σ2

2 + σ2
3 and volS3 = σ1 ∧ σ2 ∧ σ3.
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4.3.2 Horizontal and the vertical space

Exactly as in Section 4.2.2 we can compute the connection 1-forms ρi for i = 1, 2, 3

with respect to the coframe we have constructed. Indeed, a straightforward computation
involving Eq. (2.3.1), Eq. (4.3.1) and Eq. (4.3.2) implies that ρi = lσi for all i = 1, 2, 3,
where

l :=
sinα− 1

2
.

Hence, we can deduce from Eq. (2.3.2) that the vertical 1-forms in these coordinates
are:

ξ0 = da0 + l(a1σ1 + a2σ2 + a3σ3), ξ1 = da1 + l(−a0σ1 − a2σ3 + a3σ2),

ξ2 = da2 + l(−a0σ2 + a1σ3 − a3σ1), ξ3 = da3 + l(−a0σ3 − a1σ2 + a2σ1).
(4.3.3)

4.3.3 SU(2)-action

Given the splitting of R5 into P ∼= H and its orthogonal complement P⊥, we can consider
SU(2) ∼= Sp(1) acting via left multiplication on P and trivially on P⊥. Equivalently, we
are considering Sp(1) ∼= Sp(P ) × IdP⊥ ⊂ SO(5). Being a subgroup of SO(5), the action
descends to the unit sphere S4.

We first consider α ∕= −π/2, where we trivialize S4 \ {south pole} using homogeneous
quaternionic coordinates on HP1 ∼= S4. In this chart, diffeomorphic to H, the action is
given by standard left multiplication.

We extend the action on S4 to the tangent bundle of S4 via the differential. In this
trivialization, H×H, the action is given by left-multiplication on both factors. Hence, if
we pick the trivialization of PSO(4) induced by {1, i, j, k}, the action of p ∈ Sp(1) maps
the element (x, IdSO(4)) ∈ H× SO(4) to (p · x, p̃), where

p̃ =

󰀵

󰀹󰀹󰀷

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

󰀶

󰀺󰀺󰀸 .

By the simply-connectedness of Sp(1) ∼= Spin(3), we can lift the action to the spin
structure PSpin(4) of S4. Using a similar diagram to (Eq. (4.2.4)) and the fact that the
lift of p̃ is (p, IdSp(1)) ∈ Sp(1) × Sp(1), we can show that in the trivialization of PSpin(4),
H× Sp(1)× Sp(1), the element (x, (IdSp(1), IdSp(1))) is mapped to (p · x, (p, IdSp(1))).

As in Section 4.2, this passes to the quotient space: S/−(S
4), and, in the induced

trivialization, H × H, the action of Sp(1) is only given by left multiplication on the first
factor by definition of µ−.
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A similar argument works for the other chart of HP1. However, the left multiplication
becomes right multiplication of the conjugate, and the lift of the new p̃ is (IdSp(1), p). It
follows that Sp(1) acts on the fibre over the south pole as it acts on H.

In particular, we proved the following lemma.

Lemma 4.3.2. The orbits of the SU(2)-action on S/−(S
4) are given in Table 4.2.

α a Orbit
∕= ±π

2
S3

= −π
2

∕= 0 S3

= −π
2

= 0 Point
= π

2
Point

Table 4.2: Spin(3) Orbits

When α ∕= ±π/2 we can use the orthonormal frame of Section 4.3.1. Obviously, it is
invariant under the action. Hence, in the induced trivialization of S/−(S

4), Sp(1) acts only
on the component of the basis. In particular, it follows that {σ1, σ2, σ3} is a coframe on
the orbits of the SU(2)-action, and, {∂1, ∂2, ∂3} is the relative frame. Observe that we are
working on the coframe {dα, σ1, σ2, σ3, da0, da1, da2, da3}.

4.3.4 Choice of frame and the Spin(7) geometry in the adapted
coordinates

Since the considered SU(2)-action only moves the base of the vector bundle S/−(S
4) in

the trivialization of Section 4.3.1, it is natural to use: {dα, σ1, σ2, σ3, ξ0, ξ1, ξ2, ξ3}. The
metrics gc and the Cayley forms Φc admit a nice formula with respect to this coframe.
Recall that we are working on the chart U := S/−(S

4) \ {α = ±π/2}.

Proposition 4.3.3. Given c ≥ 0, the Riemannian metric gc, in the coframe considered
in this subsection, satisfies:

gc = 5(c+ r2)3/5
󰀃
dα2 + cos2 α

󰀃
σ2
1 + σ2

2 + σ2
3

󰀄󰀄
+ 4(c+ r2)−2/5

󰀃
ξ20 + ξ21 + ξ22 + ξ23

󰀄
,

(4.3.4)

where r2 = a20 + a21 + a22 + a23.
Given c ≥ 0, the Cayley form Φc, in the coframe considered in this subsection, satisfies:

Φc =16(c+ r2)−4/5ξ0 ∧ ξ1 ∧ ξ2 ∧ ξ3 + 25(c+ r2)6/5 cos3 αdα ∧ σ1 ∧ σ2 ∧ σ3

+ 20(c+ r2)1/5 cosα

󰀣
3󰁛

i=1

(ξ0 ∧ ξi − ξj ∧ ξk) ∧ (dα ∧ σi − cosασj ∧ σk)

󰀤
,

(4.3.5)

where r2 = a20 + a21 + a22 + a23.

78



Proof. It follows immediately from Eq. (2.3.3), Eq. (2.3.4) and the choice of the coframe.

If we denote by {eα, e1, e2, e3, eξ0 , eξ1 , eξ2 , eξ3} the frame dual to {dα, σ1, σ2, σ3, ξ0, ξ1, ξ2, ξ3},
it is straightforward to relate these vectors to ∂α, ∂1, ∂2, ∂3, ∂a0 , ∂a1 , ∂a2 , ∂a3 .

Lemma 4.3.4. The dual frame {eα, e1, e2, e3, eξ0 , eξ1 , eξ2 , eξ3} satisfies:

eα = ∂α;

e1 = ∂1 + l (−a1∂a0 + a0∂a1 + a3∂a2 − a2∂a3) ;

e2 = ∂2 + l (−a2∂a0 − a3∂a1 + a0∂a2 + a1∂a3) ;

e3 = ∂3 + l (−a3∂a0 + a2∂a1 − a1∂a2 + a0∂a3) ;

eξi = ∂ai ∀i = 0, 1, 2, 3,

where l is as defined in Section 4.3.2.

Proof. It is straightforward from the definition of dual frame and Eq. (4.3.3).

4.3.5 Cayley condition

Analogously to the case carried out in Section 4.2, the generic orbits of the considered
SU(2)-action are 3-dimensional (see Lemma 4.3.2). Hence, it is sensible to look for invari-
ant Cayley submanifolds. To this purpose, we assume that the submanifold N consists of
a 1-parameter family of 3-dimensional SU(2)-orbits in M . In particular, the coordinates
that do not describe the orbits, i.e. a0, a1, a2, a3 and α, need to be functions of a parameter
τ . This means that we can write:

N = {((cosα(τ)u, sinα(τ)), (a0(τ), a1(τ), a2(τ), a3(τ))) : |u| = 1, τ ∈ (−󰂃, 󰂃)} . (4.3.6)

The tangent space is spanned by {∂1, ∂2, ∂3, α̇∂α+
󰁓3

i=0 ȧi∂ai}, where the dots denote the
derivatives with respect to τ . The condition under which N is Cayley becomes a system
of ODEs.

Proposition 4.3.5. Let N be an SU(2)-invariant submanifold as described at the begin-
ning of this subsection. Then, N is Cayley in the chart U if and only if the following
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system of ODEs is satisfied:
󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ȧ0a1 − ȧ1a0 − ȧ2a3 + ȧ3a2 = 0

ȧ0a2 + ȧ1a3 − ȧ2a0 − ȧ3a1 = 0

ȧ0a3 − ȧ1a2 + ȧ2a1 − ȧ3a0 = 0

cosα(−f cos2 α + 3l2gr2)ȧ0 − l(l2gr2 − 3f cos2 α)a0α̇ = 0

cosα(−f cos2 α + 3l2gr2)ȧ1 − l(l2gr2 − 3f cos2 α)a1α̇ = 0

cosα(−f cos2 α + 3l2gr2)ȧ2 − l(l2gr2 − 3f cos2 α)a2α̇ = 0

cosα(−f cos2 α + 3l2gr2)ȧ3 − l(l2gr2 − 3f cos2 α)a3α̇ = 0

where r2 = a20 + a21 + a22 + a23, l = (sinα− 1)/2, f = 5(c+ r2)3/5 and g = 4(c+ r2)−2/5.

Proof. We first write the tangent space of N , which is spanned by {∂1, ∂2, ∂3, α̇∂α +
󰁓3

i=0 ȧi∂ai}, in terms of the frame {eα, e1, e2, e3, eξ0 , eξ1 , eξ2 , eξ3}. This can be easily done
using Lemma 4.3.4. Through a long computation analogous to the one carried out in
Section 4.2.7.1, we can apply Proposition 2.3.9 to this case, and we obtain the system of
ODEs.

Remark 4.3.6. It is interesting to point out that, exactly as in the SO(3)× Id2 case (see
Lemma 4.2.16), the projection π7 of Proposition 2.3.9 will just be the identity in the proof
of Proposition 4.3.5.

4.3.6 Cayley fibration

In the previous section we found the condition that makes N , SU(2)-invariant submanifold,
Cayley. This consists of a system of ODEs, which will characterize the desired Cayley
fibration.

Harvey and Lawson local existence and uniqueness theorem implies that any SU(2)-
invariant Cayley can meet the zero section only when α = ±π/2, i.e. outside of U .
Otherwise, the zero section of S/−(S

4), which is Cayley, would intersect such an N in a
3-dimensional submanifold, contradicting Harvey and Lawson theorem. It follows that
the initial value of one of the ais is different from zero. We take a0(0) ∕= 0, as the other
cases will follow similarly. Now, it is straightforward to notice that:

a1 =
a1(0)

a0(0)
a0; a2 =

a2(0)

a0(0)
a0; a3 =

a3(0)

a0(0)
a0; (4.3.7)

solves the first 3 equations of the system given in Proposition 4.3.5. Moreover, it also
reduces the remaining equations to the ODE:

cosα(−f cos2 α + 3l2gr2)ȧ0 − l(l2gr2 − 3f cos2 α)a0α̇ = 0,
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where, as usual, r2 = a20 + a21 + a22 + a23, l = (sinα − 1)/2, f = 5(c + r2)3/5 and g =

4(c + r2)−2/5. As Eq. (4.3.7) implies that a0 = p−1r, where p is the positive real number
satisfying p2 = 1 +

󰁓3
i=1(ai(0)/a0(0))

2, we can rewrite the previous ODE as:

cosα(−f cos2 α + 3l2gr2)ṙ − l(l2gr2 − 3f cos2 α)rα̇ = 0. (4.3.8)

Remark 4.3.7. It is easy to verify that Eq. (4.3.8) is not in exact form. Hence, it cannot
be easily integrated. It is a non-trivial open task to verify whether, possibly up to change
of coordinates, Eq. (4.3.8) can be integrated in closed form.

In order to understand the SU(2)-invariant Cayley fibrations, we analyse the ODE
given in Eq. (4.3.8). First, we deduce the sign of f1 := cosα(−f cos2 α+3l2gr2). If we let

αc(r) := arcsin

󰀕
−2r2 + 5c

8r2 + 5c

󰀖
,

it easy to verify that f1 is positive on the left of αc for (α, r) ∈ (−π/2, π/2) × R+, and
negative otherwise. Moreover, f1 vanishes along the 3 curves αc,α = ±π/2; there, f1

changes sign. Note that αc → arcsin(−1/4) as r → ∞.
Now, we consider f2 := l(l2gr2 − 3f cos2 α)r. Letting

βc(r) := arcsin

󰀕
−14r2 + 15c

16r2 + 15c

󰀖
,

then, f2 is positive on the right of βc for (α, r) ∈ (−π/2, π/2) × R+, and it is negative
otherwise. Obviously, f2 vanishes along the curve βc and the vertical line α = π/2. Note
that βc → arcsin(7/8) as r → ∞. The last key observation is that f2/f1 tends to zero as
α tends to π/2.

Putting what said so far together, and observing that βc(r) < αc(r) for all r > 0, we
can draw the flow lines for Eq. (4.3.8) (see Fig. 4.5). Finally, we can use these to deduce
the form of the solutions from standard arguments (see Fig. 4.6).

The conical version. We consider the easier conical case first. From a topological
point of view, it is obvious that the red and green Cayleys of Fig. 4.6 (B) are homeomorphic
to S3×R. As the the group action becomes trivial on α = π/2, the topology of the fibres in
blue cannot be recovered from the picture. However, it will be clear from the asymptotic
analysis that these are smooth topological R4s. As a consequence, we have constructed a
Cayley fibration on the chart U ∩M0, which extends to the whole M0 by continuity (i.e.
we complete the Cayleys in blue and we add the whole π0-fibre at α = −π/2). On M0

the Cayley fibration remains a fibration in the classical sense. A reasoning similar to the
one of Section 4.2 shows that the parametrizing space B of the Cayley fibration is R4.
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Figure 4.5: Flow lines for Eq. (4.3.8).

(a) generic case (b) conical case

Figure 4.6: Solutions of Eq. (4.3.8).
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The smooth version. Now, we deal with the generic case c > 0. As above, the
topology of the red Cayleys of Fig. 4.6 (A) is S3 × R; the blue ones have topology R4.
In the latter, we use the same asymptotic analysis argument of the conical case. Finally,
the submanifolds in green are smooth topological R4s. As usual, we extend the Cayley
fibration on U to the whole M by continuity (i.e. we add the whole πc-fibre over α = −π/2,
we complete the Cayleys in blue and green, and we add the zero section S4). Observe
that the zero section, the πc-fibre over α = −π/2 and the green Cayleys all intersect in a
point p. It follows that the M ′ given in Definition 3.1.5 is equal to M \ {p}. Once again,
a reasoning similar to the one of Section 4.2 shows that the parametrizing space B of the
Cayley fibration is S4.

The smoothness of the fibres (the asymptotic analysis as r → r0 ≥ 0) In
this subsection, we study the smoothness of the fibres. This is trivial as long as the
submanifolds are contained in U ; hence, the Cayleys of topology S3 ×R are smooth, and
we only need to check the others at the points where they meet ∂U . To this purpose, we
carry out a asymptotic analysis similar to the one of Section 4.2.

As a first step, we restrict the metric gc to N . Combining Eq. (4.3.4) together with
Eq. (4.3.7) and its consequence a0 = p−1r for p positive real number satisfying p2 =

1 +
󰁓3

i=1(ai(0)/a0(0))
2, we can write the restriction as follows:

gc
󰀏󰀏
N
=
󰀃
5(c+ r2)3/5 cos2 α + 4(c+ r2)−2/5l2r2

󰀄󰀃
σ2
1 + σ2

2 + σ2
3

󰀄

+4(c+ r2)−2/5dr2+5(c+ r2)3/5dα2,
(4.3.9)

where α and r are related by the differential equation: Eq. (4.3.8) and, as usual, l =

(sinα− 1)/2.
(r → r0). Recall that f2/f1 → 0 as α → π/2. Therefore, the Cayleys around α = π/2

are asymptotic to the horizontal line α = r0 for some constant r0 ≥ 0. By Eq. (4.3.9), the
metric in this first order linear approximation becomes:

gc
󰀏󰀏
N
∼ 5(c+ r20)

3/5
󰀃
d(α− π/2)2 + (α− π/2)2

󰀃
σ2
1 + σ2

2 + σ2
3

󰀄󰀄
.

In this way, we have proved that near α = π/2 every Cayley we have constructed is
smooth. Moreover, we can also deduce that the blue Cayleys of Figure Fig. 4.6 are
topologically R4s.

(r → 0). Finally, we need to check whether the remaining Cayleys of topology R4

are smooth or not. In this situation we can approximate them near α = −π/2 with the
submanifold associated to the line:

α = Ar − π

2
,
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where A is some positive constant (as the lines corresponding to the Cayleys live between
αc and βc). The metric in the linear approximation is asymptotic to:

gc
󰀏󰀏
N
∼ c−2/5(5cA2 + 4)

󰀃
dr2 + r2

󰀃
σ2
1 + σ2

2 + σ2
3

󰀄󰀄
,

hence, we conclude that these submanifolds are smooth as well.
The main theorems Putting all these results together we obtain the following the-

orems.

Theorem 4.3.8 (T. [71]; Generic case). Let (M,Φc) be the Bryant–Salamon manifold
constructed over the round sphere S4 for some c > 0, and let SU(2) act on M as in
Section 4.3.3. Then, M admits an SU(2)-invariant Cayley fibration parametrized by B ∼=
S4. The fibres are topologically S3 × R, S4 and R4. All the Cayleys are smooth. There
is only one point where multiple fibres intersect. This point lies in the zero section of
S/−(S

4), and there are S3 ⊔ {two points} Cayleys passing through it.

Theorem 4.3.9 (T. [71]; Conical case). Let (M0,Φ0) be the conical Bryant–Salamon man-
ifold constructed over the round sphere S4, and let SU(2) act on M0 as in Section 4.3.3.
Then, M0 admits an SU(2)-invariant Cayley fibration parametrized by B ∼= R4. The fibres
are topologically S3 × R or R4 and are all smooth. Moreover, as these do not intersect,
the SU(2)-invariant Cayley fibration is a fibration in the usual differential geometric sense
with fibres Cayley submanifolds.

Remark 4.3.10. Blowing-up at the north pole, it is easy to see that the Cayley fibration
becomes trivial in the limit.

Remark 4.3.11. As in the previous section, we are able to compute the multi-moment
maps relative to this action explicitly. Indeed, this is:

νc :=
5

6
(r2 − 5c)(c+ r2)1/5(sinα− 1)3 − 25

2
(c+ r2)6/5 cos2 α(sinα− 1).

In order to provide an idea on how the multi-moment maps behave, we draw the level
sets of ν1 and ν0 (see Figure Fig. 4.7).
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(a) Level sets of ν1 (b) Level sets of ν0

Figure 4.7: Level sets of the multi-moment map in the generic and conical case

Asymptotic geometry as r → ∞. The first observation we need to make is that
there are only two asymptotic behaviours for the Cayleys constructed in Theorem 4.3.8
and in Theorem Theorem 4.3.9: one corresponding to α ∼ −π/2 and the other to α ∼
arcsin(−1/4). In both cases, we can use Eq. (4.3.9) to obtain the asymptotic cone, which
is:

gc
󰀏󰀏
N
∼ ds2 +

9

25
s2(σ2

1 + σ2
2 + σ2

3),

for α ∼ π/2, and it is

gc
󰀏󰀏
N
∼ ds2 +

9

16
s2(σ2

1 + σ2
2 + σ2

3),

for α ∼ arcsin(−1/4), where s := (10/3)r3/5.

4.4 Cayley fibration invariant under the lift of the SO(3)

irreducible action on S4

Differently from the other actions, where it was possible to describe the invariant fibrations
explicitly, this is not the case when SO(3) acts irreducibly on S4. Indeed, irreducibility
implies that there is no simple frame on S4 compatible with the group action. Hence,
the Cayley condition, and consequently the associated ODEs, will become extremely
complicated.
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Moreover, the analogous action on the flat Spin(7) space and on the Bryant-Salamon
G2 manifold Λ2(T ∗S4) was studied by Lotay [58, Subsection 5.3.3] and Kawai [51], re-
spectively. In both cases, the defining ODEs for Cayley submanifolds and coassociative
submanifolds were too complicated to be explicitly solved.
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Chapter 5

Calibrated geometry in G2 manifolds
with T2× SU(2)-symmetry

This chapter, based on the joint work with Aslan [6], is focused on G2 manifolds admitting
a T2 × SU(2)-action, which we assume to be of cohomogeneity-two. In particular, we
provide a local characterization of these manifolds, that reduces the torsion-free condition
to two nested systems of ODEs, and we consider the following natural families of calibrated
submanifolds in them: T2 ×IdSU(2)-invariant associative submanifolds, T2 ×S1-invariant
coassociative submanifolds for some S1 < SU(2) and IdT2 × SU(2)-invariant coassociative
submanifolds.

As in Chapter 4, the invariance reduces the problem of findings such objects into a
system of ODEs in the appropriate orbit space. However, since we are working with
an enhanced symmetry, we can project the solutions of such ODEs to the quotient of
the whole group, T2 × SU(2). It turns out that, on this 2-dimensional quotient, the T2-
invariant associatives and the T3-invariant coassociatives correspond to the level sets of
some combination of the associated multi-moment maps, which act as local coordinates
for the surface. The SU(2)-invariant coassociatives, when they exist, correspond to the
integral curves of a nowhere vanishing vector field, once again induced from a multi-
moment map.

Moreover, we show that T2-invariant associatives and SU(2)-invariant coassociatives
are smooth, while the T3-invariant coassociatives develop singularities with one tangent
cone diffeomorphic to a line times the Harvey–Lawson cone (see [37]).

We apply our discussion to the flat space, to the manifolds constructed by Foscolo–
Haskins–Nordström in [32] and on the Bryant–Salamon manifolds of topology S3 × R4.
In particular, we obtain new examples of T2-invariant associatives in the latter two cases.
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5.1 G2 manifolds with T2× SU(2)-symmetry

In this section, we consider a G2 manifold (M,ϕ) with a structure-preserving T2 × SU(2)-
action of cohomogeneity two, i.e. the maximal dimension achieved by the orbits is 5.

5.1.1 T2× SU(2)-symmetry

To understand the action of T2 × SU(2) on M , let Γ be the kernel of the homomorphism
T2 × SU(2) → Aut(M), which is discrete by assumption. Once we rewrite it as Γ =

{(ai, bi) ∈ T2 × SU(2) : i ∈ I}, we define Γ1 := {a ∈ T2 : (a, IdSU(2)) ∈ Γ} and Γ2 := {b ∈
SU(2) : (IdT2 , b) ∈ Γ}, which are subgroups of T2 and SU(2) respectively.

Consider the T2 action on M given by T2 ×IdSU(2) ⊂ T2 ×SU(2). Since

Γ1 × IdSU(2) = (T2 ×IdSU(2)) ∩ Γ,

we see that the action of T2 /Γ1 is effective, and, as T2 /Γ1 is diffeomorphic to T2, we can
assume, without loss of generality, that Γ1 is trivial and that the action of T2 ∼= T2 ×IdSU(2)

is effective. We denote by S the singular set of this action, i.e. the complement of the
principal set with respect to this action.

Analogously, we have an SU(2)-action on M given by SU(2) ∼= IdT2 × SU(2) ⊂
T2 × SU(2), which induces an effective action of SU(2)/Γ2. The singular set of this action
is denoted by S̃.

Remark 5.1.1. Observe that Γ does not need to be equal to Γ1 × Γ2. For instance, if
Γ = {±(1, 1)}, then, Γ1 and Γ2 are trivial.

Now, we show that Γ is in the center of T2 × SU(2): Z(T2 × SU(2)) = T2 ×{±1}.

Lemma 5.1.2. Let x ∈ M be such that the stabilizer (T2 × SU(2))x is discrete. Then,
the stabilizer is a subgroup of the center Z(T2 × SU(2)).

Proof. We show that the adjoint representation of (T2 × SU(2))x on t2 ⊕ su(2) is trivial,
which implies the statement by naturality of the exponential map.

Let N = νx be the normal space at x of the T2 × SU(2)-orbit, whose tangent space is
identified with t2 ⊕ su(2) in the usual manner. Then, the representation of (T2 × SU(2))x

on TxM splits as

TxM = t2 ⊕ su(2)⊕N, (5.1.1)

and coincides with the adjoint representation on the t2 ⊕ su(2) part. Being abelian, the
action on t2 is trivial and the same holds for the cross product of the t2-generators, which
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spans a linear subspace N1 of N by Eq. (5.1.6). Note that we used that the action of
(T2 × SU(2))x preserves the G2-structure. Denote by N2 the orthogonal complement of
N1 in N , which is invariant under the action. Being an isometry, every element g ∈
(T2 × SU(2))x acts on N2 by multiplication of λg, where λg ∈ {−1,+1}.

Finally, we show that λg cannot be −1. In order to do so, we consider the map
(t2 ⊕N1)⊗N2 → su(2) which is the composition of the cross product and the projection
onto the su(2) component in the splitting given by Eq. (5.1.1). Since t2 ⊕ N1 is an
associative subspace, this map is an isomorphism of representations. Hence, g acts on
su(2) by multiplication of λg. We conclude the proof because there is no element in
T2 × SU(2) whose adjoint action on su(2) is multiplication by −1.

Corollary 5.1.3. Since T2 × SU(2) acts with cohomogeneity two, Γ is in the centre of
T2 × SU(2). Hence, SU(2)/Γ2 is either SU(2) or SO(3).

Corollary 5.1.4. The principal stabilizer of (T2 × SU(2))/Γ is trivial.

Proof. As a consequence of Lemma 5.1.2, all principal stabilizer subgroups are not only
conjugate, but equal to each other. Since the action is effective after the quotient, the
principal stabilizer needs to be trivial.

From now on, we consider the action of G := (T2 × SU(2))/Γ ⊂ Aut(M,ϕ), and we
denote by MP its principal set. This is going to greatly simplify our arguments, indeed,
the G-action is effective and with trivial principal stabilizer.

We will make use of two additional actions induced from the original T2 × SU(2). Let
Γ̃1 := {ai : (ai, bi) ∈ Γ} and let Γ̃2 := {bi : (ai, bi) ∈ Γ}, which is either trivial or {±1} by
Corollary 5.1.3. We state the following lemma without proof.

Lemma 5.1.5. Let T2 ∼= T2 × IdSU(2) acting on M . Then, there exists an induced action
of GT2

:= T2 /Γ̃1 on MP/(SU(2)/Γ2) which is free. In particular, MP/(SU(2)/Γ2) becomes
a principal GT2-bundle over B := MP/G. Similarly, there exists a GSU(2) := SU(2)/Γ̃2

action induced by SU(2) ∼= IdT2 × SU(2) on MP/T2 which is free. As before, MP/T2

becomes a principal GSU(2)-bundle over B.

The various group quotient are summarised in the following diagram:

MP

MP/(SU(2)/Γ2) MP/T2

B

/(SU(2)/Γ2) /T2

/G

/GT2 /GSU(2)

.
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5.1.2 Stratification

Applying the orbit type stratification theorem and the principal orbit type theorem to our
setting, where G = (T2 × SU(2))/Γ acts effectively on M , we see that M decomposes as
the union of G-orbit types, and there exists one of them which is open and dense in M . In
this subsection, we study the geometry of the G-action to understand this stratification.

To simplify our notation, we fix a point x ∈ M and denote by T the tangent space of
Gx at x and by N its normal space, i.e. the orthogonal complement of T in TxM .

In the discussion of the stratification, we will need the following lemma:

Lemma 5.1.6. Let T2 be a maximal torus in G2. Then, the representation of T2 on R7

splits as V ⊕W1 ⊕W2 ⊕W3. Where V is 1-dimensional and each Wi is 2-dimensional.
Each of V ⊕Wi is an associative subspace.

Recall that S is the singular set of the T2-action and, as a consequence of the fol-
lowing theorem, it is also the set where the generators of the T2-component are linearly
dependent, i.e. there are no exceptional orbits (cfr. [64, Lemma 2.6]).

Theorem 5.1.7 (Aslan–T. [6]). The dimension of the stabilizer Gx is not bigger than 4,
and,

• if dim(Gx) = 0, then, Gx is trivial, i.e. there are no exceptional orbits,

• if dim(Gx) = 1, then, x /∈ S and Gx is isomorphic to SO(2). The action of Gx on
N splits as N1 ⊕N2 with dim(N1) = 1, dim(N2) = 2 where Gx acts trivially on N1

and faithfully by rotations on N2,

• if dim(Gx) = 2, then, x ∈ S and the identity component of Gx is isomorphic to
T2 and acts as a maximal torus in U(2) on N . The G-orbit Gx is an associative
submanifold of M ,

• if dim(Gx) = 3, then, x /∈ S and Gx is diffeomorpic to SU(2). The action of Gx

on N leaves a 1-dimensional subspace N1 ⊂ N invariant and acts on the orthogonal
complement N2 via the standard embedding SU(2) → SO(4),

• if dim(Gx) = 4, then, x ∈ S and the identity component of Gx is isomorphic to
U(2). The action on the normal bundle N is via the embedding

U(2) → SU(3), A 󰀁→
󰀕
A 0
0 detA−1

󰀖
.
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Consequently, the singular orbit set can be decomposed into S1 ∪ S2 ∪ S3 ∪ S4 where Si is
the set of points with i-dimensional stabilizer.

Proof. The first part of the proposition follows from the fact that the rank of t2 ⊕ su(2)

is three, while the rank of g2 is two. Hence, since Gx ⊂ G2 under the identification of
(TxM,ϕx) ∼= (R7,ϕ0), the dimension of Gx cannot be equal to 5.

By the slice theorem, a neighbourhood of Gx is equivariantly diffeomorphic to a neigh-
bourhood of the zero section of G ×Gx N. It follows that the representation of Gx on N

is faithful. Indeed, every neighbourhood of the orbit Gx intersects MP , on which Gx acts
freely because of Corollary 5.1.4.

If dim(Gx) = 0, then, an argument similar to the one used for Lemma 5.1.2 shows that
Gx acts trivially on N . This means that Gx is trivial by the faithfullness of the Gx-action
on N .

We now consider the case dim(Gx) = 1 and x ∈ S. This means that Ḡx = Gx ∩
(T2 ×IdSU(2))/Γ is not trivial and, being a subgroup of (T2 ×IdSU(2))/Γ, it acts trivially
on T ∼= g/gx. Since the cross-product restricted to any 4-dimensional subspace generates
TxM , we deduce that Ḡx acts trivially on all of TxM . This is a contradiction as Ḡx ≤ Gx

and hence it has to act faithfully on N . We have shown that if dim(Gx) = 1, then,
x /∈ S. So it remains to show that Gx is isomorphic to S1. Since x /∈ S the intersection
of t2 ⊕ {0} ⊂ t2 ⊕ su(2) with gx is trivial. This means that g/gx splits into t2, on which
Gx acts trivially, and a 2-dimensional subspace m. As before, the normal space splits
into N1 ⊕ N2, where N1 is spanned by the cross product on t2 and N2 is its orthogonal
complement in N . So Gx acts trivially on N1. To summarise, the action of Gx on TxM

splits as
TxM = t2 ⊕m⊕N1 ⊕N2.

The action of Gx is isometric and faithful on the 2-dimensional space N2. So, Gx is either
isomorphic to SO(2) or to O(2). In the latter case, there is an element τ of order two and
a subspace N3 ⊂ N2 that is fixed by τ . The cross products of t2 ⊕ N1 ⊕ N3 generate all
of TxM so that τ acts trivially on all of TxM . This is impossible since the action on N

must be faithful.
When dim(Gx) = 2, we first assume by contradiction that x /∈ S. Consider the Lie

algebra homomorphism ψ : gx → su(2) coming from the projection t2 ⊕ su(2) → su(2).
The image of ψ would be a 2-dimensional Lie subalgebra of su(2) which does not exist.
It follows that x ∈ S and the identity component of Gx is isomorphic to T2. Since the
action of the identity component of Gx splits at T ⊕N , we can apply Lemma 5.1.6 to see
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that T is isomorphic to V plus one of the Wi, for convenience say W1, and N to the sum
of W2 ⊕W3 and the statement follows.

We now deal with the dim(Gx) = 3 case. Consider the Lie algebra homomorphism
ψ : gx → su(2) as above. The image of ψ is a Lie subalgebra of su(2), hence, it is
either su(2) or a 1-dimensional subalgebra. The second case is impossible, indeed, the
condition implies t2 ⊕ {0} ⊂ gx, but gx also intersects su(2) in a 1-dimensional subspace,
so gx ∼= t2 ⊕ ψ(gx) ∼= t3. This is a contradiction since gx is a subalgebra of g2, which has
rank two. So ψ is surjective, which means that gx intersects t2 ⊕ {0} transversally. It
remains to show that Gx is isomorphic to SU(2), which also implies that x /∈ S. As before,
Gx acts trivially on g/gx = t2. The element U1 × U2 lies in N and spans a 1-dimensional
subspace N1 on which Gx acts trivially too. On the orthogonal complement N2 of N1 in
N the action of Gx is faithful. So Gx acts trivially on an associative three-plane, which
means Gx is a subgroup of SU(2). Since Gx is 3-dimensional, it is isomorphic to SU(2)

and the action on N2 is isomorphic to the standard action of SU(2) on C2.
Finally, we consider dim(Gx) = 4. Similarly as above, we can show that T is the span

of U1 and U2, it is 1-dimensional, and it is fixed by Gx. The subgroup of G2 that fixes a
1-dimensional subspace is SU(3). So, the action of Gx on the 6-dimensional normal space
N defines an embedding Gx → SU(3), yielding a special unitary representation of Gx on
C3. We first show that, when restricted to the identity component, this representation
must be reducible. Indeed, every 4-dimensional Lie subalgebra of g is isomorphic to
u(2) = su(2) ⊕ u(1). Since Gx is compact, it suffices to show that every complex 3-
dimensional special unitary representation of SU(2) × U(1) is reducible. To see this,
denote by Vk the unique k-dimensional irreducible representation of SU(2) and by Wm

the representation of U(1) on C with weight m. All irreducible representations of the direct
product SU(2)×U(1) are of the form Vk⊗Wm. The 3-dimensional of these, V3⊗Wm, are
not special unitary. Since the representation is faithful and special unitary, we conclude
that it must be (V2⊗W1)⊕W−2, i.e. of the desired form. Moreover, the element (−1,−1)

acts trivially, so the identity component of Gx must be (SU(2)× U(1))/Z2
∼= U(2).

Note that the third part of the theorem implies that either S3 = ∅ or GSU(2) = SU(2).

Corollary 5.1.8. The singular set of the T2-action is S = S2 ∪ S4.

The following statement follows from the slice theorem and by how Gx acts on the
normal bundles in Theorem 5.1.7.

Proposition 5.1.9. Each Si is either empty or a smooth embedded submanifold of di-
mension:

dim(S1) = 5, dim(S2) = 3, dim(S3) = 3, dim(S4) = 1.
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Figure 5.1: Representation of how the different Sis intersect.

Moreover, each connected component of S2 and S4 are G-orbits.

Remark 5.1.10. Note that the stratification induced by {Si} is not the one of the orbit
type stratification theorem, as there could be different orbit types of the same dimension.
However, we have seen in Proposition 5.1.9 that the tangent space of each Si is spanned
by the tangent space of the orbit and possibly U1×U2. Since the flow of U1×U2 preserves
the orbit type (see Lemma 5.3.2), the orbit type is unchanged along every connected
component of each Si and, hence, we can reconstruct one stratification from the other.

5.1.3 Multi-moment maps

From now on, we assume the G2 manifold to be simply connected, so that all closed
1-forms are exact. In this setting, we can describe the components of the multi-moment
maps related to ϕ and ∗ϕ in an explicit way.

Remark 5.1.11. Observe that it makes sense to consider the multi-moment maps with
respect to ∗ϕ as well. Indeed, Eq. (2.2.1) implies that an action preserving ϕ will also
preserve the metric gϕ and the volume form volϕ. Therefore, ∗ϕ will also be preserved.

Let U1, U2 be the generators of the t2 component, while V1, V2, V3 are the generators
of the su(2) component. Clearly, we can choose them to satisfy:

[Ul, Um] = 0, [Ul, Vi] = 0, [Vi, Vj] = 󰂃ijkVk, (5.1.2)

for all l,m = 1, 2 and i, j, k = 1, 2, 3.
The components of the multi-moment maps with respect to ϕ are defined by:

dθli := ϕ(Ul, Vi, ·), dν := ϕ(U1, U2, ·), (5.1.3)

where l = 1, 2, i = 1, 2, 3.
The components of the multi-moment maps with respect to ∗ϕ are defined by:

dµi := ∗ϕ(U1, U2, Vi, ·), dη := ∗ϕ(V1, V2, V3, ·), (5.1.4)
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where i = 1, 2, 3.
As a reality check, one can show that the one-forms given on the right-hand-side are

all closed.

Lemma 5.1.12. The multi-moment maps µ and θ can be computed explicitly and, up to
additive constants, have the form:

µk = − ∗ ϕ(U1, U2, Vi, Vj), θlk = −ϕ(Ul, Vi, Vj) (5.1.5)

i.e., dµk = ∗ϕ(U1, U2, Vk, ·) and dθlk = ϕ(Ul, Vk, ·), where (i, j, k) is a cyclic permutation
of (1, 2, 3).

Proof. The proof is a straightforward application of Cartan’s formula, the identity [LX , iY ] =

i[X,Y ] for every vector field X, Y and Eq. (5.1.2).

Before considering the properties of the multi-moment maps, we state two classical
result that we will use throughout the paper.

Lemma 5.1.13. Let M be a smooth manifold with an SU(2) action of generators V1, V2, V3

satisfying [Vi, Vj] = 󰂃ijkVk. Then, a smooth function f : M → R3 is equivariant with
respect to the action of SU(2) on R3 via the double cover SU(2) → SO(3) if and only if f
satisfies:

LVi
fj = 󰂃ijkfk.

Lemma 5.1.14. Let M be a smooth manifold with the action of a connected Lie group
G of generators U1, ..., Ul. Then, a smooth function f : M → R is invariant under the
G-action if and only if f satisfies:

LUi
f = 0,

for every i = 1, ..., l.

Proposition 5.1.15. Let ν, θl := (θl1, θ
l
2, θ

l
3) be as in Eq. (5.1.3), let µ := (µ1, µ2, µ3) and

η be as in Eq. (5.1.4). Then, ν is T2 × SU(2)-invariant, µ and θl are T2-invariant and
SU(2)-equivariant, where SU(2) acts on R3 via the double cover SU(2) → SO(3). Finally,
η is always SU(2)-invariant and also T2-invariant if the SU(2)/Γ2-action has a singular
orbit. Moreover, these functions pass to the appropriate quotients.

94



Proof. The T2-invariance of ν, µ is clear from Lemma 5.1.14 equations Eq. (5.1.3) and
Eq. (5.1.4), while the SU(2)-equivariance of µ and θl follows from Lemma 5.1.13 and:

LVi
µj = 󰂃ijkµk, LVi

θlj = 󰂃ijkθ
l
k.

If we show that ϕ(U1, U2, Vi) = 0 for every i = 1, 2, 3, then, ν is SU(2)-invariant and θl is
T2-invariant. Cartan’s formula, together with [LX , iY ] = i[X,Y ], implies that d(ϕ(U1, U2, Vi)) =

0 and, hence, ϕ(U1, U2, Vi) is a constant ci. We conclude because:

0 = LVj
ci = Vj(ϕ(U1, U2, Vi)) = −ϕ(U1, U2, Vk) = −ck, (5.1.6)

where we used again Cartan’s formula and Eq. (5.1.2). Analogously, one can prove that η
is T2-invariant if the SU(2)/Γ2-action has a singular orbit. We conclude as η is obviously
SU(2)-invariant.

Since the T2 × SU(2)-action is structure preserving, and in particular, its generators
are Killing vector fields, we can obtain the following result. Recall that the Lie derivative
of a Killing vector field commutes with musical isomorphisms.

Corollary 5.1.16. Let ν be as in Eq. (5.1.3), let µ := (µ1, µ2, µ3) and η be as in
Eq. (5.1.4). Then, ∇ν = U1 × U2 and ∇|µ|2 are T2 × SU(2)-invariant, while ∇η is
always SU(2)-invariant and also T2-invariant if the SU(2)/Γ2-action has a singular orbit.
Moreover, these vector fields pass to the appropriate quotients.

Remark 5.1.17. As an abuse of notation, we will use the same symbol for both the invariant
functions (or vector fields) in the total space and in the quotients.

We are also able to locate the zero set of the multi-moment map of µ in terms of the
stratification given in Theorem 5.1.7.

Corollary 5.1.18. The zero set of µ satisfies:

S2 ∪ S3 ∪ S4 ⊂ µ−1(0) ⊂ S1 ∪ S2 ∪ S3 ∪ S4.

Proof. The statement follows from Theorem 5.1.7 and and that the two-form ∗ϕ(U1, U2, ·, ·)
does not vanish on any 3-dimensional subspace, orthogonal to U1 × U2.
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5.2 Local characterization of G2 manifolds with
T2× SU(2)-symmetry

Any smooth hypersurface in a torsion-free G2 manifold carries a half-flat SU(3)-structure
[22]. Moreover, If this hypersurface and its structure are real-analytic one recovers the
G2-structure locally through Hitchin’s flow [41]. In our setup, it is natural to take the
level sets of ν as hypersurfaces, indeed, they inherit the T2 × SU(2)-symmetry and have
U1 × U2 as a normal vector field. The main result of this subsection, Theorem 5.2.9, is
to describe half-flat SU(3)-structures with cohomogeneity one T2 × SU(2)-symmetry as a
solution of an ODE system.

We proceed in two steps. Firstly, in Section 5.2.1, we only assume T2-symmetry and
recall from [62] that the SU(3)-structure on the level sets of ν is described as a T2-bundle
over a four manifold χ, with a coherent tri-symplectic structure. Secondly, in Section 5.2.2,
we enhance the symmetry to T2 × SU(2) which implies that the structure on χ admits
a structure-preserving GSU(2)-action. In Proposition 5.2.6, we show that coherent tri-
symplectic structures with this symmetry are the solution of an ODE system.

Remark 5.2.1. It is worth noting that Apostolov and Salamon [5] considered G2 manifolds
with only T1-symmetry. Under this weaker assumption, they still reduced their problem
to a 4-manifold with an appropriate structure. In this way, they managed to construct
explicit non-complete examples of G2 manifolds.

5.2.1 T2-reduction

Let (M,ϕ) be a G2 manifold with a T2 structure-preserving action and singular set S.
Associated to this action we have a multi-moment map ν, defined in Eq. (5.1.3). On
M \ S, the level sets of ν are hypersurfaces oriented by ∇ν = U1 × U2. The T2-action
passes to the level sets of ν and, hence, it endows ν−1(t) with a T2-bundle structure over
ν−1(t)/T2, which inherits the following additional structure (cfr. [62]).

Definition 5.2.2. A 4-manifold χ has a coherent tri-symplectic structure if it admits
three symplectic forms σ0, σ1, σ2 such that σ0 ∧ σi = 0 for i = 1, 2, σ0 ∧ σ0 is a volume
form of χ and the matrix Q := (Qij)i,j=1,2 defined by σi ∧ σj = Qijσ0 ∧ σ0 is positive
definite.

The forms defining this structure on ν−1(t)/T2 are:

σ0 = ∗ϕ(U1, U2, ·, ·), σ1 = ϕ(U1, ·, ·), σ2 = ϕ(U2, ·, ·), (5.2.1)

where U1, U2 are two generators of the T2-action.
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Conversely (see [62, Theorem 6.10]), assuming real analyticity, one can locally recon-
struct a G2 manifold with T2-symmetry from a coherent tri-symplectic four manifold χ,
equipped with a closed two form F ∈ Ω2(χ,R2) with integral periods and whose self-dual
part F+ satisfies the orthogonality condition:

F+ = (σ̄1, σ̄2)A, (5.2.2)

for some A ∈ GL(2,R) such that Tr(AQ) = 0. These conditions guarantee that F+ is the
curvature form of a T2-bundle N over χ. The G2-structure is then constructed from N

by running rescaled Hitchin’s flow. The resulting G2-structure yields a moment map ν of
which N is a level set and rescaled Hitchin’s flow evolves N into other level sets of ν.

When the symmetry is enhanced to T2 × SU(2), the remaining GSU(2)-symmetry passes
to the quotient χ and preserves its coherent tri-symplectic structure (see Eq. (5.2.1)). We
describe such four manifolds with a free GSU(2)-symmetry, as this gives a local description
in the principal part of G2 manifolds with T2 × SU(2)-symmetry in terms of an explicit
differential equation.

5.2.2 On 4-manifolds with a coherent symplectic triple and GSU(2)-
symmetry

Let χ be a coherent symplectic 4-manifold with a GSU(2) structure-preserving free action
generated by the vector fields V1, V2, V3 satisfying [Vi, Vj] = 󰂃ijkVk. Since the action is
structure-preserving, we have that LVi

σ̄j = 0, therefore, Q is GSU(2)-invariant. Moreover,
as Q is also positive definite, there exists a unique real symmetric, positive definite 2× 2

matrix T such that T−2 = T−1(T−1)T = Q, which is GSU(2)-invariant as well.
Let volχ := 1

2
σ̄0 ∧ σ̄0 and define the forms σi :=

󰁓2
j=1 Tijσ̄j for i = 1, 2, which then

satisfy σi ∧ σj = 2δij volχ. Define the metric:

gχ(u, v) volχ = σ0 ∧ iuσ1 ∧ ivσ2,

for all u, v ∈ Txχ and all x ∈ χ. With respect to this metric, the vector fields Vi are
Killing for gχ.

Lemma 5.2.3. There are unique gχ-orthonormal one-forms αi for i = 0, ..., 3 such that

σ0 = α0 ∧ α1 + α2 ∧ α3, σ1 = α0 ∧ α2 + α3 ∧ α1,

σ2 = α0 ∧ α3 + α1 ∧ α2, α0 =
1󰁳
det ĝχ

volχ(V1, V2, V3, ·),
(5.2.3)

where ĝχ is the matrix (gχ(Vi, Vj))i,j=1,2,3.
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Proof. It suffices to prove this statement in a point. Indeed, this reduces the structure
group of the bundle of coframes satisfying Eq. (5.2.3) to the trivial group. Hence, it
admits a global section.

For the pointwise statement, fix a volume form on V ∼= R4 and consider the map

Λ2 ⊗ Λ2 → Λ4 ∼= R, α⊗ β 󰀁→ α ∧ β.

This defines an inner product on Λ2 with signature (3, 3), which gives rise to a cover
SL(4,R) → SO(3, 3). The two-forms σis are orthogonal to each other and span a posi-
tive subspace. The statement for the first three equations of Eq. (5.2.3) follows because
SO(3, 3), and hence SL(4,R), act transitively on positive subspaces.

The stabilizer group inside SL(4,R) of the two forms in Eq. (5.2.3) is SU(2) ⊂ SO(4),
which acts freely and transitively on the unit sphere in R4. Because 1√

det gχ
volχ(V1, V2, V3, ·)

has unit norm, one uses the SU(2)-action to make this one form equal to α0.

We define the unit vector field X := α
\
0, which satisfies the conditions α0(X) = 1 and

αi(X) = 0 for i = 1, 2, 3, and determines the αis by αi = σi−1(X, ·). Consider the two
3× 3-matrices:

ηij := σi−1(X, Vj) = αi(Vj), τij := σi−1(Vk, Vl),

where (j, k, l) is a positive permutation of (1, 2, 3). We also define the one-forms δ0 and
δi for i = 1, 2, 3 by:

δ0 =
󰁳

det ĝχα0 = volχ(V1, V2, V3, ·), δi(Vj) = δij, δi(X) = 0.

which satisfies αi =
󰁓3

j=1 ηijδj.

Lemma 5.2.4. The matrix functions η and τ have the following properties

• τ = adj(ηT ),

• the row vectors of τ and η are GSU(2)-equivariant, and hence, their determinant is
GSU(2)-invariant,

• The metric on the vector fields V1, V2, V3, which we called ĝχ, is determined by η via:

ĝχ = ηTη, (5.2.4)

• We have the matrix equation:

σ =
1

det(η)
δ0 ∧ ηδ + adj(η)T δ̄, (5.2.5)
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where σ = (σ1, σ2, σ3)
T , δ = (δ1, δ2, δ3)

T , ᾱ = (α2 ∧ α3,α3 ∧ α1,α1 ∧ α2)
T and δ̄ =

(δ2 ∧ δ3, δ3 ∧ δ1, δ1 ∧ δ2)
T

Proof. For the first statement, we can compute, using Eq. (5.2.3):

τij = σi−1(Vk, Vl) = αm ∧ αn(Vk, Vl) = ηmkηnl − ηmlηnk = adj(η)ji,

where (i,m, n) is a positive permutation of (1, 2, 3).
Since the vector field X commutes with Vi:

[Vi, X] = LVi
(α󰂒

0) = (LVi
α0)

󰂒 =
1󰁳
det ĝχ

(LVi
(volχ(V1, V2, V3, ·))󰂒 = 0,

we can obtain the second statement as follows:

LVk
ηij = σi−1(X, [Vk, Vj]) = −σi−1(X, Vl)󰂃kjl = −ηil󰂃kjl.

The proof is analogous for τ .
The third statement follows from the following decomposition:

(ĝχ)ij = gχ(Vi, Vj) =
3󰁛

k=1

αk(Vi)αk(Vj) =
3󰁛

k=1

ηkiηkj = (ηTη)ij.

For the fourth statement, observe that the equation αi =
󰁓3

j=1 ηijδj implies that ᾱ =

adj(η)T δ̄. Furthermore, Eq. (5.2.4) implies det(ĝχ) = det(η)2. In particular, η is invertible
and the sign of det(η) does not change on χ. By swapping σ1 and σ2 if necessary, we
can assume that det η > 0. The formula follows from plugging these expressions into
Eq. (5.2.3).

5.2.3 The differential equation

Now, we deduce how the equations dσ̄i = 0 transform under the given change of frame.
We assume that H1(χ,R) = 0 so that there is a function R such that dR = δ0. The
dual vector field ∂R is equal to (det η)−1X, so it satisfies [∂R, Vi] = 0, for every i = 1, 2, 3.
Morever, by Lemma 5.2.4 and the commutator relationships for X and Vi, we deduce that
dδ = −δ̄ and d( 1

det η
δ0) = 0.

We recall the following version of Lemma 5.1.13 in terms of differential forms, which
can be proven using Cartan’s formula.

Lemma 5.2.5. A smooth function f : χ → R3 is SU(2)-equivariant if and only if (df =

f × δ) mod δ0, for (f × δ)i = 󰂃ijkfjδk.
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Consequently, we have

dη = η × δ +
∂η

∂R
δ0, dτ= τ × δ +

∂τ

∂R
δ0,

where (η × δ)ij = (ηi × δ)j and (τ × δ)ij = (τi × δ)j, i.e. we are taking the cross products
of the rows of η with δ. Putting all together in Eq. (5.2.5), we get

dσ =
1

det η
δ0 ∧ (−dη ∧ δ − ηdδ) + dτ ∧ δ̄ =

1

det η
δ0 ∧ (−ηδ̄) + (∂Rτ)δ0 ∧ δ̄.

The last step is due to the two identities:

(η × δ) ∧ δ = 2ηδ̄, (τ × δ) ∧ δ̄ = 0.

Extend T to a 3× 3 matrix by padding it with one in the (1, 1) entry and by zeros in the
first row and column elsewhere. This extension is such that σ = T σ̄, which implies:

dσ = dT ∧ σ̄ = ∂R(T )T
−1δ0 ∧ σ = ∂R(T )T

−1τδ0 ∧ δ̄. (5.2.6)

Combining the two equations for dσ and using 1
det η

η = (τT )−1 gives:

0 = (∂Rτ − (∂RT )T
−1τ − (τT )−1)δ0 ∧ δ̄. (5.2.7)

Proposition 5.2.6. A coherent symplectic 4-manifold χ with free GSU(2)-symmetry and
intersection matrix Q admits a matrix-valued function τ : χ → M3×3(R) whose rows are
equivariant with respect to the action of SO(3) on R3 and satisfying the following differ-
ential equation:

∂Rτ = (∂RT )T
−1τ + (τT )−1, (5.2.8)

where T : χ → M3×3(R) is the, padded as above, matrix satisfying Q = T−2.
Conversely, given a function T : (a, b) → Sym2×2(R) of positive-definite matrices,

identified with T : (a, b) → Sym3×3(R) padded as above, then, every equivariant solution
τ : (a, b) × GSU(2) → M3×3(R) of Eq. (5.2.8) defines a coherent symplectic structure on
(a, b)×GSU(2) with intersection matrix Q = T−2.

Proof. The first statement follows from Eq. (5.2.7) since the δ0∧δ̄i are linearly independent
on χ.

For the converse direction, define the frame δ0, . . . , δ3 on (a, b) × SU(2) such that
δ0 = dR and δi are the invariant one-forms on SU(2), hence, satisfying dδi = −󰂃ijkδj ∧ δk.
Lemma 5.2.5 and Eq. (5.2.8) imply

dτ = τ × δ +
󰀃
(∂RT )T

−1τ + (τT )−1)
󰀄
δ0 (5.2.9)
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Define the forms αi by the equation αi =
󰁓3

j=1 ηijδj, with η := adj(τT )) as before.
From the αis, we can reconstruct the forms σ by Eq. (5.2.3) and then σ̄ through the
transformation matrix T . We deduce that σ̄i are such that σ̄0 ∧ σ̄i = 0 and σ̄i ∧ σ̄j =

Qij
1
2
σ0 ∧ σ0, where Q = T−2. Our previous computations show that Eq. (5.2.9) implies

that the forms σ̄i are closed and, hence, we conclude.

Remark 5.2.7. If Q is the identity matrix, then gχ is hyperkähler and by rotating σ0, σ1, σ2

we can assume that τ is a diagonal at a given point. The diagonality is preserved along R

(as in the Biachi IX ansatz) by Eq. (5.2.8), and we have ∂R
1
2
τ 2ii = 1 for i = 1, 2, 3. So each

τii is of the form
√
2R + ki and can we assume that k1 + k2 + k3 = 0 and k1 ≥ k2 ≥ k3.

The metric gχ is
1

τ11τ22τ33
dR2 +

τ22τ33
τ11

δ21 +
τ33τ11
τ22

δ22 +
τ11τ22
τ33

δ23

If all ki = 0, then, all τii are equal and the metric is flat. If k1 > 0 and k2 = k3 < 0

then gχ is the Eguchi-Hanson metric. In all other cases the metric is incomplete. Note
that the Taub-NUT and Atiyah-Hitchin metric are not described by our set-up, since the
SU(2) action is not tri-holomorphic on these spaces. Instead, the action rotates the three
hyperkähler two-forms.

We refer the reader to [7] for further details on hyperkähler metrics in 4-dimensions.

5.2.4 From coherent tri-symplectic manifolds to G2 manifolds

Finally, we use Proposition 5.2.6 to obtain a local construction of G2 manifolds with
T2 × SU(2)-symmetry through [62, Theorem 6.10]. The last object that we need is an
orthogonal self-dual two-form F+ ∈ Ω2(χ,R2) on χ with integral periods. This condition
assumes the existence of an anti-self-dual form F− ∈ Ω2(χ,R2) such that F+ + F− is
closed and defines an element in H2(M,Z2). In the GSU(2)-invariant case the closedness
condition can always be satisfied.

Lemma 5.2.8. For any GSU(2)-invariant F+ ∈ Ω2
+(χ,R2), there is a F− ∈ Ω2

−(χ,R2) such
that F+ + F− is closed.

Proof. Define the anti-self dual two forms that are analogous to the σis we defined above:

σ−
0 = −α0 ∧ α1 + α2 ∧ α3,

σ−
1 = −α0 ∧ α2 + α3 ∧ α1,

σ−
2 = −α0 ∧ α3 + α1 ∧ α2.
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Then σ− satisfies the same structure equation Eq. (5.2.6). This can be shown by comput-
ing dσ− as before or by using a local diffeomorphism that preserves α1,α2,α3 and flips
the sign of α0, i.e pulls back σ to σ−. This implies:

d(σ − σ−) = ∂R(T )T
−1δ0 ∧ (σ − σ−),

which vanishes as σ − σ− = 2α0 ∧ α and α0 is proportional to δ0. Since F+ is self-dual,
there is a : χ → R3 such that F+ = aσ =

󰁓
aiσi. Because F+ is GSU(2)-invariant, the

same is true for a, which means da is a multiple of α0. Now define F− := −aσ− and
observe

d(F+ + F−) =
3󰁛

i=1

2dai ∧ α0 ∧ αi = 0,

as required.

If the function T is real-analytic the solution to Eq. (5.2.8) is too by the Cauchy-
Kovalevskaya theorem. Clearly if F+ is real-analytic, so is F− and also the half-flat
SU(3)-structure constructed in [62, Proposition 6.5]. This observation, together with
Proposition 5.2.6 and [62, Theorem 6.10] implies the following theorem.

Theorem 5.2.9 (Aslan–T. [6]). Let T : (a, b) → Sym3×3(R) as in Proposition 5.2.6,
and let F+ ∈ Ω2

+((a, b) × GSU(2),R2) satisfying Eq. (5.2.2) and such that F+ + F− from
Lemma 5.2.8 has integral periods. Then, there is a torus bundle N → (a, b) × GSU(2)

and every equivariant solution τ : (a, b) × GSU(2) → M3×3(R) of Eq. (5.2.8) defines an
half-flat SU(3)-structure on N , which admits a T2 × SU(2)-symmetry. Moreover, if the
coefficient function T and F+ are real-analytic, this induces a torsion-free G2-structure
on (−󰂃, 󰂃)×N admitting the same symmetry.

The equations can be viewed on the quotient B, parametrised by |µ| and ν. Indeed
(dν)󰂐 is the direction of rescaled Hitchin’s flow. Furthermore, for the coherent symplectic
structure on χt, we have

dR = volχ(V1, V2, V3, ·) =
󰁛

i,j,k

󰂃ijk
2

∗ ϕ(U1, U2, Vi, Vj) ∗ ϕ(U1, U2, Vk, ·) = −
󰁛

k

µkdµk

= −1

2
d|µ|2.

So, up to a constant, R = 1
2
|µ|2.
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5.3 T2-invariant associative submanifolds

In this section, we study T2-invariant associative submanifolds of the G2 manifold (M,ϕ),
endowed with a structure-preserving, cohomogeneity two action of T2 × SU(2) on it. We
use the same notation and conventions of Section 5.1.

5.3.1 T2-invariant associatives

As in Section 5.1.3, let U1 and U2 be the generators of the t2 component in t2 × su(2).
We give a first characterization of T2-invariant associatives as integral curves of a vector
field.

Proposition 5.3.1. Let L0 be a T2-invariant associative submanifold of M \ S ⊆ MP .
Then, L0/T2 is an integral curve of the nowhere vanishing vector field U1 × U2 in (M \
S)/T2. Conversely, every integral curve of U1 × U2 in (M \ S)/T2 is the projection of a
T2-invariant associative in M \ S.

Proof. Since U1, U2 are linearly independent in M \S, the vector field U1×U2 is nowhere
vanishing there, we deduce that {U1, U2, U1 × U2} is an associative plane from Proposi-
tion 2.2.8. The statement follows immediately from the correspondence between curves
in (M \ S)/T2 and T2-invariant 3-submanifolds in M \ S.

We now state some general properties of T2-invariant associatives and integral curves
of U1 ×U2 that will play a crucial role later on. Since the flow of U1 ×U2 commutes with
the group action of G, we have the following.

Lemma 5.3.2. The flow along U1 ×U2 preserves the orbit type of G. Therefore, integral
curves of U1×U2 stay in the same stratum of the stratification of the orbit type stratification
theorem, and hence of the one described in Theorem 5.1.7.

In particular, we have proven that the problem of finding T2-invariant associatives
decomposes with respect to the stratification, and, on M \ S it reduces to a problem of
finding integral curves of a nowhere vanishing vector field.

Lemma 5.3.3. The multi-moment map µ : M → R is preserved by the vector field U1×U2.
Therefore, µ is constant on every T2-invariant associative.

Proof. By definition of µi we have dµi(U1 × U2) = ∗ϕ(U1, U2, Vi, U1 × U2) for every i =

1, 2, 3. If U1, U2 are linearly independent, then, {U1, U2, U1 × U2} is an associative plane
and ∗ϕ(U1, U2, Vi, U1 × U2) = 0 by Proposition 2.2.8. Otherwise, the equation trivially
holds.
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5.3.2 Associatives in the principal set

In this subsection, we restrict our attention to the principal set MP . Let U1, U2, V1, V2, V3

be the generators of the G-action as in Section 5.1.3. Note that the action is assumed to
be of cohomogeneity two, hence, the generators are everywhere linearly independent on
MP .

Proposition 5.3.4. The restriction of (µ, ν) to MP is a submersion. In particular,
µ−1(c) ∩MP is a 4-dimensional submanifold of MP for every c in the image µ(MP ) and
(|µ|, ν) : MP/G → R2 is a local diffeomorphism onto its image.

Proof. Given a fixed x ∈ MP , it follows from Corollary 5.1.18 that µ(x) ∕= 0. Since µ is
SU(2)-equivariant and ν is SU(2)-invariant, it suffices to show that (|µ|2, ν) is a submersion
at x.

As
󰁓3

k=1 ϕ(U1, U2, µkVk) = 0, there is an X ∈ TxM such that
󰁓3

k=1 ∗ϕ(U1, U2, Vkµk, X) =

1. Observe that
1

2
d|µ|2 =

3󰁛

k=1

µk ∗ ϕ(U1, U2, Vk, ·),

which implies d|µ|2(X) = 2 and d|µ|2(U1 × U2) = 0. The statement follows because
dν(U1 × U2) ∕= 0 on MP .

We now take a different perspective. Indeed, we argued in Lemma 5.1.5 that the
action of SU(2) on M induces on the quotient MP/T2 a principal bundle structure with
structure group GSU(2) and base space the surface B. Let H be a connection on MP/T2

such that the SU(2)-invariant U1×U2 is horizontal at each point. A connection satisfying
this property always exists, indeed, we showed in Proposition 5.1.15 that the one induced
by the G2-metric satisfies:

0 = g(U1 × U2, Vj) = ϕ(U1, U2, Vj).

Using such a connection, integral curves of U1 × U2 are horizontal lifts over such curves
in B.

Theorem 5.3.5 (Aslan–T. [6]). Let H be a connection on the principal GSU(2)-bundle
MP/T2 → B such that U1 × U2 ∈ H. Let γ be a curve in MP/T2. The following are
equivalent:

1. The pre-image π−1
T2 (imγ) is a T2-invariant associative in MP ,

2. γ is an integral curve of U1 × U2,
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3. γ is the horizontal lift of a level set of |µ| on B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral curve
of U1 × U2 in B there is a GSU(2)-family of integral curves of U1 × U2 in MP/T2.

Proof. The equivalence between (1) and (2) has been established in Proposition 5.3.1,
while the equivalence between (2) and (3) can be deduced from the G-invariance of U1×U2,
the fact that it is assumed to be horizontal and Proposition 5.3.4.

5.3.3 Local description of associatives in the principal set

We have seen that MP/T2 is a GSU(2)-principal bundle over the base B. In Theorem 5.3.5,
the integral curves of U1 × U2 in MP/T2 are described as horizontal lifts of curves in a
surface. In the following, we will show how these horizontal lifts can be computed in a
local trivialization of the principal bundle.

Lemma 5.3.6. Let U×GSU(2) → MP/T2 be a local trivialisation with U1×U2 ∈ TU×{0},
inducing a local chart Ū ⊂ MP and a projection map pGSU(2) : Ū → GSU(2). Then, the fibres
of the submersion (|µ|, pGSU(2)) : Ū → R+ ×GSU(2) are associative submanifolds.

Proof. As U1 × U2 ∈ TU × {0}, it follows that its integral curves will be constant on the
GSU(2) component of U ×GSU(2). Since |µ| is constant on the GSU(2)-component and since
integral curves of U1 × U2 are contained in the level set of |µ| we conclude the proof.

The aim is to find trivializations of MP/T2 → B where we can apply Lemma 5.3.6.
Since µ is GSU(2)-equivariant, we can reduce the structure group of the GSU(2)-principal
bundle. Indeed, given v ∈ R3 \ {0} and denoting by 〈v〉 the line spanned by v, then,
Qv := µ−1(〈v〉) is an S1 reduction of the bundle MP/T2 → B.

Proposition 5.3.7. In a neighbourhood U ⊂ B, where (|µ|, ν) is a diffeomorphism onto
its image and the image is convex, there exists a flat connection on Qv such that U1 ×U2

is horizontal.

Proof. Let θ ∈ Ω1(Qv,R) be any connection form on Qv for which U1 × U2 is horizontal.
Then the curvature form dθ is a basic form, so there is a function f : U → R such that
dθ = fdν ∧ d|µ|, where we are considering (|µ|, ν) as coordinates on U ⊂ B. The form
d|µ| is basic and annihilates U1×U2, hence, θ′ = θ+Fd|µ| is also a connection on Qv such
that U1 × U2 is horizontal for every smooth function F : U → R. The new connection
θ′ is flat if and only if (∂νF + f)dν ∧ d|µ| = 0. Because the image is convex, ∂νF = −f

admits at least one solution, for instance, using the methods of characteristics.
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Theorem 5.3.8 (Aslan–T. [6]). In a neighbourhood U ⊂ B where (|µ|, ν) is a diffeomor-
phism onto its image, and the image is convex, there exists a trivialization U ×GSU(2) →
MP/T2 such that U1 × U2 ∈ TU × {0}. As a consequence, the map (|µ|, pGSU(2)) is a fibre
bundle map whose fibres are associative submanifolds. Here, pGSU(2) is the projection to
GSU(2) coming from the trivialisation.

Proof. The bundle Qv has a flat connection for which U1 × U2 is horizontal. Since U is
simply-connected, there is a trivialization U × S1 → Qv which induces this connection,
i.e. the horizontal bundle is TU × {0} ⊂ TQv. Since U1 ×U2 is horizontal the component
in S1 is constant along integral curves of U1×U2. By equivariance, we get a trivialization
U ×GSU(2) → MP/T2 such that the component in GSU(2) is constant along integral curves
of U1×U2. We conclude using Lemma 5.3.6 and because the image of (|µ|, ν) is convex.

Clearly, the condition on (|µ|, ν) in Theorem 5.3.8 always holds locally.

5.3.4 Associatives in the singular set

In this subsection, we describe the T2-invariant associative submanifolds of M that are
contained in the singular set of the T2 × SU(2)-action. In particular the following theorem
holds.

Theorem 5.3.9 (Aslan–T. [6]). Let S1,S2,S3 and S4 be the strata as described in Theo-
rem 5.1.7. Then,

• S1 admits an SU(2)-equivariant submersion F : S1 → S2 or F : S1 → RP2 such that
each (not necessarily connected) fibre is a T2-invariant totally geodesic associative.

• every connected component of S2 is an associative G-orbit,

• The set S3 ∪ S4 is totally geodesic, associative and the action of G on S3 is of
cohomogeneity one.

Proof. We first consider S1. For every c ∈ R× R and b ∈ S2, consider the Killing vector
field Wc,b := c1U1 + c2U2 + b1V1 + b2V2 + b3V3 and its zero set Lc,b ⊂ M \ S. Observe that
every point of S1 lies in a unique Lc,b, up to Lc,b = L−c,−b. Indeed, Wc,b corresponds to the
Lie algebra of Gx

∼= S1. If L0,b is non-empty, then we define F : S1 → RP2 by mapping
each point to the corresponding [b] ∈ RP2.

If L0,b is empty, then the map can be lifted to F : S1 → S2. This can be done
because c fixes the Z2-action as follows. As Gx is the quotient of a compact 1-dimensional
subgroup of T2 × SU(2) and Wc,b spans its Lie algebra, we deduce that c ∈ Q×Q \ {0},
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(otherwise, Lc,b is empty). Any line in R2 determines two open half-spaces which are such
that −IdR2 is bijective. Moreover, if the line is chosen to be of irrational slope, then it
does not intersect Q×Q \ {0}. Let H+ be one of these half-planes. Now, every x ∈ S1 is
in Lc,b = L−c,−b for some (c, b) ∈ Q2 \ {0} × S2, but only one element of {±c} is in H+.
Hence, we argued that

S1 =
󰁞

(c,b)∈H+×S2

Lc,b

and that the union is disjoint. We define F : S1 → S2 such that on each of Lc,b the value
of F is b.

To show that F is equivariant, let ξc,b be the Lie algebra element corresponding to the
vector field Wc,b and recall that

Lc,b = {x ∈ M | ξc,b ∈ gx},

where gx is the Lie algebra of Gx. The equivariance follows because, for every g ∈ SU(2)

we have:
ξc,b ∈ gx ⇔ ξc,gb = Adgξc,b ∈ Adggx = ggx

The space Lc,b is a totally geodesic submanifold since it is the zero set of a Killing
vector field and, since the vector fields U1, U2, U1×U2 commute with Wc,b, they are linearly
independent and tangent to Lc,b. It remains to show that F is a submersion. For a point
x ∈ S1, a neighbourhood of the orbit Gx in S1 is diffeomorphic to R×G/Gx. The vector
field U1 × U2 is tangent to the R direction, so F is invariant under the coordinate in R
and descends to a G-equivariant map G/Gx, which is a T2-invariant submersion.

We now turn our attention to S2. By Proposition 5.1.9, S2 is smooth, 3-dimensional
and, by Theorem 5.1.7, associative. As it is 3-dimensional, we deduce that every connected
component is a G-orbit.

Finally, we consider S3 ∪S4. In Proposition 5.1.9, we have seen that S3 is smooth and
3-dimensional and that S4 is smooth and 1-dimensional. It follows that S3 is dense in
S3 ∪ S4 and it suffices to show that S3 ∪ S4 is smooth and that S3 is associative, totally
geodesic and of cohomogeneity one. Clearly, S3 is open in S3 ∪ S4. Hence, it is enough to
show smoothness at a point x ∈ S4. By Theorem 5.1.7, the normal representation of Gx on
C3 splits into two invariant components N = N1 ⊕N2 where dim(N1) = 1, dim(N2) = 2.
The set of points with 3-dimensional stabilizer is exactly N1. So, by the slice theorem,
there is a diffeomorphism of Gx×N to a neighbourdhood U ⊂ M of Gx such that Gx×N1

is mapped to U ∩ (S3 ∪ S4) and smoothness follows.
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The set S3 is totally geodesic because it is the common zero locus of three Killing
vector fields. The submanifold S3 is associative because at each point the tangent space
is the span of U1, U2 and U1 × U2.

Combining Theorem 5.3.8 with Theorem 5.3.9 we obtain an associative fibration in
the sense of Definition 3.1.5.

Corollary 5.3.10. If (|µ|, ν) : B → R2 is a diffeomorphism onto its image with fibres of
ν connected, then M admits a global T2-invariant associative fibration.

5.3.5 Singularity analysis

In this last subsection, we show that every T2-invariant associative in a G2 manifold with
T2 × SU(2)-symmetry needs to be smooth.

Theorem 5.3.11 (Aslan–T. [6]). Every T2-invariant ϕ-calibrated current in M is a
smooth submanifold. Moroever, if a T2-invariant ϕ-calibrated current intersects the sin-
gular set of the T2 × SU(2)-action, then, it is contained in the singular set.

Proof. As a first step, we observe that the local uniqueness and existence theorem implies
that T2-invariant ϕ-calibrated currents are smooth away from S = S2 ∪ S4.

Moreover, if L is a T2-invariant ϕ-calibrated current intersecting S, we claim that
it needs to be contained in the singular set of the G-action. Indeed, if by contradiction
suppL∩MP ∕= 0, then, µ

󰀏󰀏
suppL

= c for some constant c ∕= 0, by Corollary 5.1.18. However,
once again by Corollary 5.1.18, we have that µ

󰀏󰀏
S2∪S4

= 0 which is a contradiction as µ is
constant on L.

All we are left to do is to consider: L ⊂ S1 ∪ S and not completely contained in S.
Note that the smoothness of L ⊂ S3 ∪ S2 ∪ S4 was proven in Theorem 5.3.9. Now, given
x ∈ S1 ∩ L ∕= ∅ we can associate a unique vector field Wc,b on M , such that its zero set
in S1 coincides with L ∩ S1 (or one of its connected components). We conclude that L

is globally the zero set of a Killing vector field Wc,b, which is a smooth totally geodesic
submanifold.

Remark 5.3.12. The approach used to study the singularities in Theorem 5.4.5 and The-
orem 5.4.19 can be attempted for T2-invariant associatives as well. However, in this case,
we could not rule out the existence of branched points.
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5.4 T3-invariant and SU(2)-invariant coassociative sub-
manifolds

In this section, we study coassociative submanifolds of the G2 manifold (M,ϕ), endowed
with a structure-preserving, cohomogeneity two action of T2 × SU(2) on it. We use the
same notation and conventions of Section 5.1.1. In particular, we consider coassociative
submanifolds that are invariant under T3 = T2 ×S1 ⊂ T2 × SU(2), for some S1 ⊂ SU(2),
and SU(2) = IdT2 × SU(2) ⊂ T2 × SU(2).

5.4.1 T3-invariant coassociative submanifolds

Given any S1 ⊂ SU(2), we can consider a structure preserving T3-action on M by
T2 ×S1 ⊂ T2 × SU(2). Moreover, up to passing to some quotient, we can assume that
the action is effective. We denote by S the singular set of this action which satisfies:
S2 ∪ S4 ⊆ S ⊆ S1 ∪ S2 ∪ S3 ∪ S4. Madsen and Swann proved in [64, Lemma 2.6] that the
stabilizer of an effective T3-action on a G2 manifold is either trivial, a circle or a two-torus.

In the notation of Section 5.1.3, we can assume that the generators of the T3 action
are U1, U2, V1 and, hence, the multi-moment maps associated to it are µ1, θ

1
1, θ

2
1 and ν.

Similarly to the T2-invariant associative case, we can see T3-invariant coassociatives as
integral curves of a vector field.

Proposition 5.4.1. Let Σ0 be a T3-invariant coassociative submanifold of M \ S. Then,
Σ0/T3 is an integral curve of the nowhere vanishing vector field ∇µ1 in (M \ S)/T3.
Conversely, every integral curve of ∇µ1 in (M \ S)/T3 is the projection of a T3-invariant
coassociative in M \ S.

Differently from the associative case, ∇µ1 does not commute with T2 × SU(2), hence,
integral curves do not respect the stratification of Section 5.1.2. However, the following
holds.

Lemma 5.4.2. Let γ be an integral curve of ∇µ1 in M \ S. Then, the multi-moment
map µ1 is strictly increasing along γ.

We recall that T3-invariant coassociatives are the level sets of the following multi-
moment maps.

Proposition 5.4.3 (Madsen–Swann [64]). The map (θ11, θ
2
1, ν) : M \ S → R3 is a sub-

mersion with fibres T3-invariant coassociative submanifolds.
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Remark 5.4.4. Differently from the T2-invariant associative case, where we showed that
M admits an associative fibration in the sense of Definition 3.1.5, we can not argue in
the same way in this case. Indeed, a priori we do not know if there exists a T3-invariant
coassociative passing through each point of S.

Using a completely different approach to the one employed in Theorem 5.3.11, we can
study the singularities that a T3-invariant coassociative can develop. To this scope, we
need to describe the structure of the local model near the singular set S. This means
that we only have to consider two cases, i.e., when the stabilizer is a circle or when it is
a torus. We refer to these sets as S1 and S2, respectively.

5.4.1.1 Blow-up analysis at S1

Let p ∈ S1 and let U1 the generator of the stabilizer at p inside T3. The complement
is assumed to be spanned by U2, U3. We pick normal coordinates around p, which we
identify as 0, using Lemma 2.2.15. We are now, in the set-up of Section 2.2.3 and we
deduce that Ũ1 = U1 and Ũ2 = U2(0), Ũ3 = U3(0) constant vector fields. If we write R7

as R3 ⊕C2, where R3 is determined by Ũ2, Ũ3, Ũ2 ×ϕ0 Ũ3, then Ũ1 generates a U(1)-action
on the C2-component preserving ϕ0. Since this U(1) is a subgroup of G2 and commutes
with Ũ2, Ũ3 and Ũ2 ×ϕ0 Ũ3, it acts as a maximal torus in C2. We conclude that the
integral curves of ∇0µ0

1 passing through p generate, under the limit of the T3-action, a
multiplicity-1 plane. Here, ∇0 denotes the flat covariant derivative on R7 and µ0

1 is the
multi-moment map defined by:

dµ0
1 = ∗ϕ0(Ũ1, Ũ2, Ũ3, ·).

5.4.1.2 Blow-up analysis at S2

Given p ∈ S2, we denote by U2, U3 the generators of the stabilizer of the T3-action at
p and by U1 the generator of the complement in the Lie algebra of t3. Now, we pick
normal coordinates at p = 0, as above. In particular, we deduce from Section 2.2.3
that Ũ t

1 → Ũ1 = U1(0), constant vector field, and that Ũ2 = U2, Ũ3 = U3. We write
R7 = R × C3, where R is determined by the flow of Ũ1, and we observe that Ũ2, Ũ3

generate a T2, ϕ0-preserving action that commutes with Ũ1. Hence, it acts only on the
C3-component as a subset of SU(3). It is straightforward to see that integral curves of
∇0µ0

1 passing through p generate, under the limit of the T3-action, the multiplicity-1 cone:
R×N, where N is the Harvey–Lawson cone in C3.
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Theorem 5.4.5 (Aslan–T. [6]). Let Σ be a T3-invariant ∗ϕ-calibrated current of M .
Then, Σ is smooth at each point of M where the stabilizer of the T3-action is 0-dimensional
or 1-dimensional. Otherwise, the stabilizer is 2-dimensional and Σ has a tangent cone
modelled on the product of the Harvey and Lawson cone with a line.

Proof. Let Σ be a ∗ϕ-calibrated current which is invariant under the T3-action. It is clear
from the local existence and uniqueness theorem that at each point where the stabilizer
of the T3-action is 0-dimensional, then, Σ is smooth there. In particular, Σ can develop
singularities only at S.

Note that Σ can not be contained in S and corresponds to an integral curve of ∇µ1

in M \ S. Without loss of generality, we consider a connected component of Σ in M \ S.
Let p ∈ (suppΣ) ∩ S and let B2(0) be a neighbourhood of p, identified with 0, as in

Lemma 2.2.15. Note that the restriction of Σ to B2(0)\S corresponds to a unique integral
curve of ∇µ1 up to picking B2(0) small enough. Otherwise, µ1

󰀏󰀏
L

would have an interior
maximum or a minimum contradicting Lemma 5.4.2. In particular, the support of the
integral curve can not be a loop passing through p. This means that γ1 as in Fig. 5.2 can
not be an integral curve of ∇µ1.

We now want to show that, under a suitable blow-up, γ converges to an integral curve
of ∇0µ0

1 passing through zero. We can then conclude by the analysis of the local models
(cfr. Section 5.4.1.1, Section 5.4.1.2) and by Theorem 2.2.12.

Since 0 ∈ Imγ, we can choose a sequence of points of Imγ: xk ∈ Ck := S1/k(0) =

{x ∈ B2(0) : |x|R7 = 1
k
}. In particular, kxk ∈ S1(0) will converge, up to passing to a

subsequence, to some x ∈ S1(0). We denote by γx
t the integral curve of 󰁩(∇µ1)t with

initial value x. Since for k → ∞ we have that kxk → x̄ and 󰁩(∇µ1)t → ∇0µ0
1 because

of Lemma 2.2.14, it follows from the theory of ODEs that γkxk

1/k converges to γx
0 integral

curve of ∇0µ0
1 of initial value x. From the choice of xk and Lemma 2.2.14, we deduce that

{γkxk

1/k }∞k=1 is a blow-up of γ and we can conclude the proof.

Remark 5.4.6. In Section 5.5.3, we will see that there are examples of singular T3-invariant
coassociatives.

Remark 5.4.7. Observe that we have not used the fact that T3 is a subgroup of T2 × SU(2).
In particular, Theorem 5.4.5 holds in G2-manifolds with a structure-preserving T3-action.

On B := MP/G the T3-invariant coassociatives correspond to the level sets of ν.

Theorem 5.4.8 (Aslan–T. [6]). Let Σ0 be a T3-invariant coassociative submanifold of
MP . Then, the projection of Σ0 to B is contained in a level set of ν. Conversely, every
level set of ν on B can be lifted to an S2 of T3-invariant coassociatives.
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Figure 5.2: Blow-up procedure of Theorem 5.4.5

Proof. If we consider the projection of Σ0 to MP/T2, we obtain a surface Σ0/T2 which is
invariant under the action of an S1 ⊂ GSU(2). So, projecting it to B reduces the dimension
to one and we obtain a curve in B. From Proposition 5.4.3 and dimensional reasons, we
conclude the proof of this direction. The converse follows from the fact that T3-invariant
coassociatives are in 1-to-1 correspondence with the S1-reductions of the GSU(2)-bundle
MP/T2, for a fixed S1 ⊂ GSU(2).

Remark 5.4.9. Observe that, if Σ0 is a T3-invariant coassociative with respect to some
T2 ×S1 ⊂ T2 × SU(2) and its projection to B is contained in a level set of ν, then, g · Σ0

is also a T3-invariant coassociative with respect to T2 ×(g ·S1) ⊂ T2 × SU(2) and projects
to the same level set of ν.

As a consequence of this discussion we deduce that B has a nice parametrization
determined by associative and coassociative submanifolds, which are T2-invariant and
T3-invariant respectively.

Corollary 5.4.10 (Associative/coassociative parametrization of the quotient). Consider
the local orthogonal parametrization of B := MP/G given by (|µ|, ν). Then, the coordinate
lines correspond to T2-invariant associative submanifolds and T3-invariant coassociative
submanifolds, respectively.
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Figure 5.3: Associative/coassociative parametrization of B

Proof. The proof follows immediately from Theorem 5.3.5 and Theorem 5.4.8.

5.4.2 SU(2)-invariant coassociative submanifolds

For the sake of brevity we omit the proofs, which are analogous to the other cases. In
order to guarantee the existence of SU(2)-invariant coassociatives, we need to assume that
ϕ(V1, V2, V3) ≡ 0 from now on. Actually, it is enough to have that it vanishes at a point.
Indeed, Cartan’s formula, together with [LX , iY ] = i[X,Y ], implies that ϕ(V1, V2, V3) is a
constant function. A sufficient condition, but not necessary as shown in Section 5.5.3.5,
is that the SU(2)/Γ2 action has a singular orbit. We denote the singular set of this action
by S̃.

Proposition 5.4.11. Let Σ0 be a SU(2)-invariant coassociative submanifold of M \ S̃.
Then, Σ0/SU(2) is an integral curve of the nowhere vanishing vector field ∇η in (M \
S̃)/SU(2). Conversely, every integral curve of ∇η in (M \ S̃)/SU(2) is the projection of
a SU(2)-invariant coassociative in M \ S̃.

Lemma 5.4.12. Let γ be an integral curve of ∇η in M \ S̃. Then, the multi-moment
map η is strictly increasing along γ.

Proposition 5.4.13. The flow of ∇η preserves the orbit type of G. Hence, the integral
curves of ∇η stay in the same strata of the stratification described in Theorem 5.1.7.
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By Lemma 5.1.5, the action of T2 on M induces on the quotient MP/(SU(2)/Γ2) a GT2

principal bundle structure with base space B. Let H be a connection on MP/(SU(2)/Γ2)

such that the T2-invariant vector field ∇η is horizontal. For instance, the connection
induced by the metric gϕ satisfies this property 0 = ∗ϕ(Ui, V1, V2, V3) = g(Ui,∇η) for
i = 1, 2. As in Theorem 5.3.5, we deduce the following proposition.

Theorem 5.4.14 (Aslan–T. [6]). Let H be a connection on the principal GT2-bundle
MP/SU(2) → B such that ∇η ∈ H. Let γ be a curve in MP/(SU(2)/Γ2). The following
are equivalent:

1. The pre-image π−1
SU(2)(imγ) is a SU(2) invariant co-associative in MP ,

2. γ is an integral curve of ∇η,

3. γ is the horizontal lift of an integral curve of ∇η in B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral curve
of ∇η in B there is a T2-family of integral curves of ∇η on MP/(SU(2)/Γ2).

Remark 5.4.15. Note that, we can not conclude that we have an SU(2)-invariant coasso-
ciative fibration in the sense of Definition 3.1.5. Indeed, Theorem 5.4.14 only implies that
MP admits a foliation of coassociative leaves.

Differently from the other cases, the obvious 1-forms that would give constant quan-
tities on SU(2)-invariant coassociatives are not closed. These are defined as:

ω1 := ϕ(V2, V3, ·), ω2 := ϕ(V3, V1, ·), ω3 := ϕ(V1, V2, ·). (5.4.1)

Remark 5.4.16. These 1-forms can be put in the context of weak homotopy moment-maps
(see [39] and references therein). Moreover, since iUl

ωi = −θli the ωis do not descend to
the quotients: MP/(SU(2)/Γ2),MP/T2 and B.

Proposition 5.4.17. A 4-dimensional submanifold, Σ0, is a SU(2)-invariant coassocia-
tive submanifold of M \ S̃ if and only if ωi

󰀏󰀏
Σ0

= 0 for all i = 1, 2, 3.

Remark 5.4.18. The previous proposition does not use the additional T2-action. In par-
ticular, we re-obtain the characterizing ODEs for the SU(2)-invariant coassociative sub-
manifolds on the Bryant–Salamon manifold Λ2

−(S
4) and Λ2

−(CP2) computed in [49].

In a similar fashion to Theorem 5.4.5, one can obtain the following regularity result
on SU(2)-invariant coassociative submanifolds.
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Theorem 5.4.19 (Aslan–T. [6]). Every SU(2)-invariant ∗ϕ-calibrated current in M is a
smooth submanifold.

Remark 5.4.20. The existence of the T2-action is crucial for Theorem 5.4.19. Indeed,
Karigiannis and Lotay constructed in [49] examples of asymptotically singular SU(2)-
invariant coassociatives on Λ2

−(S
4) and on Λ2

−(CP2).

5.5 Examples

In this final section, we consider the flat space, C3 × S1, the G2 manifolds constructed
by Foscolo–Haskins–Nordström in [32] and the Bryant–Salamon G2 manifolds of topology
S3 × R4. On these spaces we explicitly discuss the general theory we developed in the
previous sections.

5.5.1 Flat C3 × S1

Given any Calabi–Yau structure on a six-manifold M there is natural G2-structure on
S1 ×M given by

ϕ := ReΩ− dθ ∧ ω, ∗ϕ = −1

2
ω2 − dθ ∧ ImΩ (5.5.1)

where θ parametrizes S1.
Consider the flat Calabi–Yau structure on C3. Namely, if (z1, z2, z3) ∈ C3 is such that

zj = xj + iyj, then:

ω :=
3󰁛

j=1

dxj ∧ dyj

is the standard Kähler form of C3 and

Ω := dz1 ∧ dz2 ∧ dz3

is the standard holomorphic volume form. The induced G2-structure on C3 × S1 is the
flat one.

Clearly, C3×S1 admits the required symmetry, where (eiλ, eit, A) ∈ U(1)×U(1)×SU(2)

acts on C3 × S1 as follows:

(eit, eiλ, A)(z1, z2, z3, e
iθ) 󰀁→ (e2iλz1, e

−iλA · (z2, z3)T , ei(t+θ)).

Associatives in C3 × S1 with T2-invariance are products of S1 with an holomorphic
curve in C3, invariant under the remaining S1. These are exactly the fibres of the map

C3 → C2, (z1, z2, z3) 󰀁→ (z1z
2
2 , z1z

2
3),
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where the singular set is mapped to 0. In the following, we describe the fibres using our
moment map method.

It is straightforward to verify that the stratification of Section 5.1.1 is as follows:

• MP = C \ {0}× C2 \ {0}× S1,

• S1 = {0}× C2 \ {0}× S1,

• S2 = ∅,

• S3 = C \ {0}× {0}× S1,

• S4 = {0}× {0}× S1.

The generators of the t2 component are:

U1 = ∂θ U2 = 2(−y1∂x1 + x1∂y1) + y2∂x2 − x2∂y2 + y3∂x3 − x3∂y3 ,

while the generators of the su(2) component are:

V1 =
1

2
(−y3∂x2 + x3∂y2 − y2∂x3 + x2∂y3),

V2 =
1

2
(−x3∂x2 − y3∂y2 + x2∂x3 + y2∂y3),

V3 =
1

2
(y2∂x2 − x2∂y2 − y3∂x3 + x3∂y3).

From these, we compute the multi-moment maps ν, η:

ν = |z1|2 −
1

2
(|z2|2 + |z3|2), η =

1

32
(|z2|2 + |z3|2)2,

and µ, θ:

µ =
1

2

󰀳

󰁃
Im(z1(z

2
2 − z23))

−Re(z1(z
2
2 + z23))

2Im(z1z2z3)

󰀴

󰁄 ,

θ1 =
1

4

󰀳

󰁃
2Re(z2z3)
2Im(z2z3)
(|z3|2 − |z2|2),

󰀴

󰁄 θ2 =
1

2

󰀳

󰁃
Re(z1(z

2
2 − z23))

Im(z1(z
2
2 + z23))

2Re(z1z2z3)

󰀴

󰁄 .

Since the metric is Euclidean, it is easy to compute the gradients:

∇ν = U1 × U2 = 2(x1∂x1 + y1∂y1)− (x2∂x2 + y2∂y2 + x3∂x3 + y3∂y3),

∇η = −1

8
(|x2|2 + |y2|2 + |x3|2 + |y3|2)(x2∂x2 + y2∂y2 + x3∂x3 + y3∂y3).
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We identify the principal set MP = C \ {0}×C2 \ {0}× S1 with C \ {0}×H \ {0}× S1.
Using polar coordinates (reiξ, ρq) ∈ C \ {0} × H \ {0} for r, ρ ∈ R+ and ξ ∈ S1 and
q ∈ Sp(1) we get

U1 × U2 = 2r∂r − ρ∂ρ.

In particular, the integral curves of U1 ×U2 can be computed explicitly. They induce, for
any fixed constant C ∈ R+ and q ∈ Sp(1), the following T2-invariant associatives:

LC,q =

󰀝󰀕
re2it,

C

r1/2
e−itq, eiθ

󰀖
: r ∈ R+, t ∈ S1, θ ∈ S1

󰀞
, (5.5.2)

which have topology R × T2. If we write q = a0 + ia1 + ja2 + ka3, then e−it acts
on q not by quaternionic left multiplication but, after the identification with C2, i.e.
q = (a0 + ia1, a2 + ia3) ∈ C2.

Theorem 5.5.1 (Aslan–T. [6]; T2-invariant associatives in C3 × S1). Consider the strat-
ification of C3 × S1 into MP ∪ S1 ∪ S2 ∪ S3 ∪ S4, as given in Section 5.1.1. Then, each
strata decomposes into T2-invariant associatives in the following way:

• MP can be fibred by T2-invariant associatives of topology T2 ×R that are defined by
Eq. (5.5.2).

• S1 = {0} × C2 \ {0} × S1 is fibred by totally geodesic T2-invariant associatives of
topology S1×(R2\{0}) via the Hopf fibration map. Clearly, these associative extend
to smooth associatives of topology S1 × R2.

• S2 = ∅.

• S3 = C\{0}×{0}×S1 is clearly an associative which extends to a smooth associative
of topology S1 × R2 if we add S4 = {0}× {0}× S1 to it.

In particular, this decomposition defines a fibration in the sense of Definition 3.1.5.

To put the fibration in the context of Section 5.3.3, we can see that MP/T2 =

{(r, ρ, q)} ∼= R+ × R+ × Sp(1) and, hence, the base of the SU(2)-bundle B is given
by {(r, ρ)} ∼= R+ × R+. The multi-moment maps (|µ|, ν) in this coordinates become:

ν = 2r2 − ρ2, µ =

󰀳

󰁃
2rρ2(a0a1 − a2a3)
rρ2(a20 − a21 + a22 − a23)
2rρ2(−a0a3 − a1a2)

󰀴

󰁄 ,

which satisfy the conditions of Corollary 5.3.10 as |µ| = rρ2. In particular, under a suitable
identification of C2 ∼= H, the above trivialization is such that the SU(2)-component of
U1 × U2 identically vanishes.
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Figure 5.4: Blue: The level sets of |µ| = rρ2 in B = R+×R+. Every level set represents an
SU(2)-family of T2-invariant associatives in MP . Orange: The level sets of ν = 2r2 − ρ2.
Every level set represents an S2 family of T3-invariant coassociatives in MP .

We now fix the S1 ⊂ SU(2) generated by V3 and describe the coassociative submani-
folds invariant under the resulting T3-action. These coassociatives are products of S1 with
a T2-invariant special Lagrangian submanifold of phase −π/2 in C3, which are classified
in [37, III.3.A Theorem 3.1] as the level sets of |z1|2−|zj|2 for j = 2, 3 and Re(z1z2z3) = c3.
This agrees with our moment map description, as the T3-invariant coassociatives are level
sets of (θ13, θ23, ν) on M \ S4.

Finally, observe that every four-plane {p}×C2 ⊂ S1×C×C2 is coassociative for every
p ∈ S1×C. Moreover, it is SU(2)-invariant because SU(2) only acts on the C2-component.
Alternatively, we obtain the same result by computing

∇η =
ρ3∂ρ
8

.

whose integral curves correspond to SU(2)-invariant coassociatives in MP .
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5.5.2 Foscolo–Haskins–Nordström manifolds

The FHN manifolds, described in Section 2.2.5, admit the required T2 × SU(2)-symmetry
under the additional assumption a := a2 = a3 and b := a1. Indeed, the action of
(λ1,λ2, γ) ∈ U(1)×U(1)×SU(2) on ([p, q], t) ∈ (SU(2)×SU(2))/K0× I, given as follows:

(λ1,λ2, γ) · ([p, q], t) = ([λ1pλ2, γqλ2], t), (5.5.3)

is structure preserving (cfr. Eq. (2.2.8)), where the two U(1)s are generated by quater-
nionic multiplication by i.

Remark 5.5.2. Obviously, there is another action of (λ1,λ2, γ) ∈ T2 × SU(2) on ([p, q], t) ∈
(SU(2)× SU(2))/K0 × I:

(λ1,λ2, γ) · ([p, q], t) = ([γpλ2,λ1qλ2], t).

The discussion is analogous to the one for Eq. (5.5.3) and we leave it to the reader.

5.5.2.1 The stratification

We first deal with the set: (SU(2)×SU(2))/K0×Int(I). If K0 is trivial, it is straightforward
to see that the principal stabilizer of the T2 × SU(2)-action is generated by (−1T2 ,−1SU(2)).
On the other hand, if K0 = Km,n ∩K2,−2 the principal stabilizer is a discrete subgroup of
T2 × SU(2) with Γ1 ∕= 0. In both cases, GSU(2) = SO(3) and the singular set is given by:

S+ = {([p, q], t) ∈ (SU(2)× SU(2))/K0 × Int(I) : p ∈ C× {0} ⊂ H} ,

S− = {([p, q], t) ∈ (SU(2)× SU(2))/K0 × Int(I) : p ∈ {0}× C ⊂ H} ,

with 1-dimensional stabilizer. If K0 is trivial, the stabilizer at ([p, q], t) is either the circle
{(λ,λ, qλq)} or {(λ,λ, qλq)}, depending if ([p, q], t) is in S+ or S−.

To understand the stratification on (SU(2) × SU(2))/K we need to distinguish three
cases:

Case 1 (K = ∆ SU(2)). If we identify SU(2)× SU(2)/∆ SU(2) with S3 via [(p, q)] 󰀁→
pq, then, the action of T2 × SU(2) becomes, for every p ∈ S3 ⊂ Sp(1):

(λ1,λ2, γ) · p = λ1pγ.

We deduce that the stabilizer is always 2-dimensional and it is the two torus: {(λ1,λ2, pλ1p)}.
Case 2 (K = {1SU(2)} × SU(2)). Under the identification of (SU(2) × SU(2))/K to

S3 given by [(p, q)] 󰀁→ p, the T2 × SU(2) action becomes:

(λ1,λ2, γ) · p = λ1pλ2,
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where p ∈ S3 ∼= Sp(1). Hence, the stabilizer is the Z2 × SU(2) given by {±1T2 , γ} if
p /∈ (C× {0}∪ {0}×C) ⊂ Sp(1), otherwise it is the 4-dimensional SU(2)×U(1) given by
{(λ,λ, γ)} or {(λ,λ, γ)}.

Case 3 (K = Km,n). Under the isomorphism for Km,n of Eq. (2.2.5), we have that
two elements of SU(2)×SU(2) are in the same equivalence class if and only they they are
equal up to right multiplication of (e−inθ, eimθ) for some θ ∈ [0, 2π). It is straightforward
to verify that the stabilizer at [(p, q)] is 1-dimensional if p /∈ C× {0} ∪ {0}× C ⊂ Sp(1).
Otherwise, it is 2-dimensional.

5.5.2.2 The multi-moment maps

In this subsection we compute the multi-moment maps on (SU(2) × SU(2))/K0 × Int(I)
and hence, by continuity, on the whole space.

Consider the Hopf fibration map S3 ⊂ H → S2 ⊂ imH that maps p → pip. Taking
two copies of the Hopf fibration, together with the identity on Int(I), yields the quotient
map to the T2-quotient:

πT2 : (SU(2)× SU(2))/K0 × Int(I) → S2 × S2 × Int(I)

(p, q, t) 󰀁→ (v, w, t),

where v = qpipq = v1i+ v2j + v3k and w = qiq = w1i+ w2j + w3k.

If h := pip = h1i + h2j + h3k and gl := qlq = gl,1i + gl,2j + gl,3k, then, the Killing
vector fields of the T2 × SU(2)-action satisfying Eq. (5.1.2) are:

U1(p, q, r) = (ip, 0, 0) = (ppip, 0, 0) = −
3󰁛

m=1

hmem(p, q, r),

U2(p, q, r) = (−pi,−qi, 0) = e1 + f1,

Vl(p, q, r) = −1

2
(0,−lq, 0) = −1

2
(0, qqlq, 0) =

1

2

3󰁛

m=1

gl,mfm,

where l = 1, 2, 3 and el, fl form the standard orthonormal left invariant frame of SU(2)×
SU(2) as defined in Section 2.2.5.2.

A straightforward computation gives the multi-moment maps in the quotient:

ν = −4(b− c1)〈v, w〉R3 , µ = −4ȧḃv ×R3 w,

θ1 = 2av − 2(a− b)〈v, w〉R3w, θ2 = −2(b+ c2)w,

η = Primitive of
󰀕
2ba2 + c2(b

2 + 2a2 + c1c2)√
−Λ

󰀖
,

(5.5.4)

where we used the following identities:

h1 = 〈v, w〉R3 , 〈h, gl〉R3 = vl, gl,1 = wl, (h× gl)1 = (v × w)l.
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5.5.2.3 Associatives in the singular set

As a first step, we deal with (SU(2) × SU(2))/K0 × Int(I). Observe that the images of
S+ and S− under the T2-projection map πT2 are:

O+ = {(v, v, t) ∈ S2 × S2 × Int(I)}, O− = {(v,−v, t) ∈ S2 × S2 × Int(I)}.

As argued in Lemma 5.1.5, the action of GSU(2) descends to (M \ S)/T2 and GSU(2) =

SO(3) acts diagonally on S2 × S2. This SO(3)-action is of cohomogeneity one and the
singular orbits are O+ and O− which have stabilizer diffeomorphic to S1.

The proof of Theorem 5.3.9 contains the construction of a fibration S1 → S2 with
associative fibres. These are zero sets of Killing vector fields. For S+ ∪ S−, the fibration
can be described explicitly as follows.

Let u : (SU(2) × SU(2))/K0 × Int(I) → S2 × S2 be the composition of πT2 with the
projection p : S2 × S2 × Int(I) → S2 × S2. Then, u maps S+ ∪ S− to p(O+) ∪ p(O−) and
the fibres are associative.

Proposition 5.5.3. The map u : S+ ∪ S− → p(O+) ∪ p(O−) ∼= S2 ∪ S2 is a submersion
with totally geodesic T2-invariant associative fibres of topology T2 ×Int(I).

Proof. By SU(2)-equivariance, it suffices to show the statement for a single fibre in each of
O+ and O−. We restrict ourselves to the fibre over the point {(i, i)} ∈ O+ ⊂ ImH× ImH,
as the O− case is analogous.

Note that

u−1({(i, i)}) = {([p, q], t) : p, q ∈ (C× {0}) ∩ Sp(1), t ∈ Int(I)},

which is the fixed set of the involution (i, i, i) ∈ U(1)× U(1)× Sp(1) acting on (SU(2)×
SU(2))/K0 × Int(I) as in Eq. (5.5.3). So u−1({(i, i)}) is a connected component of the
fixed set of (i, i, i), which is therefore totally geodesic and associative.

We now consider the singular orbit SU(2) × SU(2)/K. If K = ∆ SU(2) or K =

{1}× SU(2), then SU(2)× SU(2)/K is an associative submanifold because it is either S2

or S3 ∪ S4. For K = Km,n, the singular orbit, SU(2) × SU(2)/Km,n, is diffeomorphic to
S3 × S2 and it admits a submersion onto S2:

F : (SU(2)× SU(2))/Km,n → S2 [(p, q)] 󰀁→ qiq,

with fibres that are T2-invariant associative submanifolds, of topology the lens space:
L(m;−n, n).
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In order to prove the previous claim, we observe that, by SU(2)-equivariance, it is
enough to show that F−1({i}) = {[p, q] : q ∈ C} has the desired properties. By inspec-
tion, it is straightforward to deduce that it is T2-invariant and of the given topology.
Associativity of F−1({i}) follows because it is a connected component of the set with
2-dimensional stabilizer with respect to the action of Remark 5.5.2. Moreover, there are
two additional T2-invariant associative submanifolds in SU(2) × SU(2)/Km,n: the two
components of S2 described in the stratification discussion of Section 5.5.2.1, which have
topology L(n;m,−m).

Finally, note that for all possible K, the associative submanifolds of Proposition 5.5.3
extend smoothly to associatives of topology S1 × R2 because of Theorem 5.3.11.

5.5.2.4 Associatives in the principal set

On the principal set

MP = ((SU(2)× SU(2))× Int(I)) \ (S+ ∪ S−) ,

we are able to give an an explicit parametrization of the GSU(2)-bundle described in Sec-
tion 5.3.2.

Consider the maps:

Ψ : SO(3)× (0, π) → S2 × S2, (g, θ) 󰀁→ (g1, (g1 cos θ − g2 sin θ))

where g1, g2 and g3 are the column vectors of g, and:

A : S2 × S2 \ (p(O+ ∪O−)) → SO(3), (v, w) 󰀁→
󰀕󰀕

v,
1

sin θ
(cos θv − w),− 1

sin(θ)
v × w

󰀖󰀖
,

where θ ∈ (0, π) is defined by 〈v, w〉R3 = cos θ. The map (A, θ) is the inverse of Ψ, and
Ψ is a diffeomorphism that is equivariant with respect to the action of SO(3) on both
spaces, where SO(3) acts on SO(3) × (0, π) by left multiplication on the SO(3) factor.
The singular orbits O+ and O− are the images of {0} × SO(3) and {π} × SO(3) if Ψ is
extended to SO(3)× [0, π].

By taking the identity on the component Int(I) we get the equivariant diffeomorphism,
which we also denote by Ψ:

Ψ : SO(3)× (0, π)× Int(I) → MP/T2 = (S2 × S2 \ (p(O+) ∪ p(O−)))× Int(I).

This means that the base space of the GSU(2)-bundle described in Section 5.3.2 is diffeo-
morphic to B = (0, π) × Int(I) and Ψ is a global trivialization of MP/T2 → B. With
respect to this trivialization, we have:

|µ| = 4ȧḃ sin θ, ν = −4(b− c1) cos θ.
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(|µ|, ν)
(0, π)× Int(I) u+u−

v+

v−

−v+

−v−

Figure 5.5: Image of α

In order to apply the machinery of Section 5.3.3, we need the following lemma. In our
case, we will have α = (|µ|, ν), u = 4ȧḃ and v = ±4(b− c1), depending on its sign.

Lemma 5.5.4. Let u, v be two functions from an interval, Int(I), to R+. If u̇, v̇ are
both positive or both negative everywhere, then, α(θ, t) = (u(t) sin(θ), v(t) cos(θ)) is a
diffeomorphism from (0, π) × Int(I) onto its image in R × R+. Moreover, if v− is the
infimum of v over I. Then, (u(t) cos(θ))−1(c) is connected if c > u− and has two connected
components otherwise. In particular, the map α is a diffeomorphism onto its image and
the image is convex if and only if u− = 0.

Proof. The determinant of the Jacobian vanishes if and only if u̇v sin2(θ)+cos2(θ)uv̇ = 0,
which never happens because u̇v and v̇u have the same sign. So, α is a local diffeomor-
phism and it remains to show that it is injective. For a fixed value, t0, of t the function
α(θ, t0) traces out a half ellipse centred at the origin with semi-axes u(t0), v(t0). If t1 is
another fixed value for t, then the ellipses α(θ, t0) and α(θ, t1) intersect if u(t0)−u(t1) and
v(t0) − v(t1) have different signs. But this is impossible because u̇ and v̇ have the same
sign. Denote by u± the supremum and the infimum of u, and by v± the supremum and
infimum of v. The image of α is the half ellipse with semi-axes (u+, v+) minus the smaller
ellipse with semi-axes (u−, v−) (see Fig. 5.5), which implies the last statement.

In particular, if the infimum of ȧḃ is zero, we get a global fibration in the sense of
Definition 3.1.5 by Corollary 5.3.10. Note that this is always the case, when the G2-
structure defined by Foscolo–Haskins–Nordström extend to the singular orbit SU(2) ×
SU(2)/K (cfr. Section 2.2.5.3).

On the other hand, if the infimum of ȧḃ is not zero, we can still describe the T2-invariant
associatives splitting B ∼= (0, π)× Int(I) into (0, π/2)× Int(I) and (π/2, π)× Int(I).

We summarize everything in the following theorem.

123



Theorem 5.5.5 (Aslan–T. [6]; T2-invariant associatives in FHN manifolds). Consider the
stratification, as given in Section 5.1.1, of the FHN manifolds into MP ∪S1∪S2∪S3∪S4

with respect to the T2 × SU(2)-action.
We first consider the subset ((SU(2) × SU(2))/K0) × Int(I), which does not intersect

S2,S3,S4. Then, each strata decomposes into T2-invariant associatives in the following
way:

• MP is fibred by T2-invariant associatives which are horizontal lifts of level sets of
|µ| = 4ȧḃ sin θ in B ∼= (0, π)×Int(I), where θ is determined by cos θ = 〈v, w〉 and v, w

are images of the Hopf maps: (v = qp̄ipq̄, w = qiq̄) ∈ S2×S2. The topology of these
associatives is T2 ×R. If the G2-structure extends smoothly to (SU(2)× SU(2))/K,
these associatives do not intersect (SU(2)× SU(2))/K.

• As in Proposition 5.5.3, S1 admits a submersion over S2∪S2 with totally geodesic T2-
invariant associative fibres of topology T2 ×R. If the G2-structure extends smoothly
to (SU(2)×SU(2))/K, these associatives extend smoothly to associatives of topology
S1 × R2 in M .

When the G2-structure extends to SU(2)× SU(2)/K, we distinguish two cases:

• If K = ∆ SU(2) or K = Id{SU(2)}×SU(2), then, SU(2)×SU(2)/K is a T2-invariant
associative of topology S3 as it is S2 or S3 ∪ S4.

• If K = Km,n, the set consists of S1 and S2. There exists a submersion over S2 with
T2-invariant associative fibres of topology L(n : m,−n). Moreover, there are two
additional T2-invariant associatives corresponding to the two connected components
of S2.

5.5.2.5 T3-invariant coassociatives

Let T3 be the torus generated by V1, U1, U2. It is straightforward to see that the singular
set of this action, S, restricted to ((SU(2)× SU(2))/K0)× Int(I) is:

SP = {([p, q], t) ∈ (SU(2)× SU(2)/K0)× Int(I) : p, q ∈ (C× {0} ∪ {0}× C) ⊂ Sp(1)} ,

which is contained in ⊂ S+ ∪S−. On SP the stabilizer is 1-dimensional and it is mapped,
via πT2 to {(±i,±i, t), (±i,∓i, t)}.

On SU(2) × SU(2)/K, with K = ∆ SU(2) or K = {1} × SU(2), the stabilizer is
everywhere 1-dimensional apart from the intersection of SU(2)×SU(2)/K with the closure
of SP , where the stabilizer is 2-dimensional. If K = Km,n, the stabilizer at [(p, q)] ∈
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(SU(2) × SU(2))/Km,n is 2-dimensional if p and q are in C × {0} ∪ {0} × C, it is 1-
dimensional if p or q is in C× {0} ∪ {0}× C and it is 0-dimensional otherwise.

By Proposition 5.4.3, the T3-invariant coassociatives, in M \ S, are the level sets of
the map (θ11, θ

2
1, ν):

([p, q], t) 󰀁→ (2av1 − 2(a− b)〈v, w〉R3w1,−2(b+ c2)w1,−4(b− c1)〈v, w〉R3) ,

where v, w are as above.
We now characterize the T3-invariant coassociatives intersecting the 1-dimensional and

the 2-dimensional stabilizer.
Given ([p, q], t0) ∈ SP , it is mapped via (θ11, θ

2
1, ν) to (󰂃12b(t0), 󰂃22(b(t0)+c2), 󰂃34(b(t0)−

c1)), where 󰂃i ∈ {0, 1} take one of four possibilities for which 󰂃1󰂃2󰂃3 = 1, depending whether
p and q are in C× {0} or {0}× C. We now turn our attention to SU(2)× SU(2)/K.

Case 1 (K = ∆ SU(2)). If K = ∆ SU(2), a T3-invariant coassociative intersects the
set with 1-dimensional stabilizer in SU(2)× SU(2)/K, if and only if it is the preimage of
(x, 0, 0) for x ∈ (−2c1, 2c1). It intersects the set with 2-dimensional stabilizer, and hence
singular by Theorem 5.4.5, if and only if x = ±2c1.

Case 2 (K = {1SU(2)} × SU(2)). In this case, the T3-invariant coassociatives cor-
responding to the preimages of (0, 0, x), for x ∈ [−4c1, 4c1], are the ones intersecting
SU(2) × SU(2)/K. Among them, the one intersecting the set with 2-dimensional stabi-
lizer are the preimages of (0, 0,±4c1).

Case 3 (K = Km,n). When K = Km,n, the coassociatives intersecting the set with
0-dimensional stabilizer in SU(2)× SU(2)/K are the the level sets of points in:

󰀋
(2mnr30xy,−2n(m+ n)r30y,−4m(m+ n)r30x) : x, y ∈ (−1, 1)

󰀌
;

they intersect the set with 1-dimensional stabilizer they are the level set of points in:

󰀋
(2mnr30xy,−2n(m+ n)r30y,−4m(m+ n)r30x) : x = ±1, y ∈ (−1, 1) or y = ±1, x ∈ (−1, 1)

󰀌
;

and they are singular if they are the preimage of:

(±2mnr30,−2n(m+ n)r30,∓4m(m+ n)r0
3) or (±2mnr30,+2n(m+ n)r30,±4m(m+ n)r0

3).

In particular, from this discussion one could characterize the T3-invariant coassocia-
tives of different topology (see Section 5.5.3.4 for an explicit example). Note that, the
only topological possibilities are the T3 ×R, T2 ×R2 and the singular ones T2 ×R× R+.
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5.5.2.6 SU(2)-invariant coassociatives

Finally, we study SU(2)-invariant coassociatives. Similarly to Section 5.5.2.2, we can
compute ϕ(V1, V2, V3) = c2. Hence, there are SU(2)-invariant coassociatives if and only if
c2 = 0. If this is the case, the coassociative submanifolds are of the form:

{([p0, q], t) ∈ ((SU(2)× SU(2))/K0)× Int(I) : q ∈ SU(2), t ∈ Int(I)},

for every fixed p0 ∈ SU(2). As we assumed c2 = 0, the only possibility to extend the
G2-structure to SU(2) × SU(2)/K is for K equal to {1} × SU(2). In this situation, the
resulting SU(2)-invariant coassociatives extend to smooth R4s.

5.5.3 Bryant–Salamon manifold

As an explicit special case of Section 5.5.2, we consider the Bryant–Salamon manifolds
of topology S3 × R4 = {(x, a) ∈ H2 : ||x|| = 1}. Up to an element of the automorphism
group, we can restrict ourselves to the following actions:

1. (λ1,λ2, γ)(x, a) 󰀁→ (λ1xγ̄,λ2aγ̄),

2. (λ1,λ2, γ)(x, a) 󰀁→ (λ1xλ2, γaλ2),

3. (λ1,λ2, γ)(x, a) 󰀁→ (γxλ2,λ1aλ2),

where (λ1,λ2, γ) ∈ U(1) × U(1) × Sp(1) and the U(1)s are generated by quaternionic
multiplication by i. Note that Case (1) can be reconducted to the discussion in Sec-
tion 5.5.2, picking K = ∆ SU(2) and up to a change of variables, while Case (2) and Case
(3) picking K = {1}× SU(2). However, to be more explicit, we fix the description of the
Bryant–Salamon manifold as in Eq. (2.2.9) and we adjust the arguments of Section 5.5.2
accordingly.

5.5.3.1 The stratification

We first notice that the principal stabilizer is generated by (−1,−1) ∈ T2 × SU(2) for all
cases, hence GSU(2) = SO(3).

The stratification for Case (1) is:

MP = (S3 ×H∗) \ S1, S1 = {(x, a) ∈ S3 ×H∗ : xa ∈ C× {0} ∪ {0}× C},

S2 = {(x, 0) ∈ H2}, S3 = ∅, S4 = ∅,
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for Case (2) it is:

MP = (S3 ×H∗) \ S1, S1 = {(x, a) ∈ H2 : x ∈ U(1)× {0} ∪ {0}× U(1)},

S2 = ∅, S3 = {(x, 0) ∈ H2} \ S1, S4 = {(x, 0) ∈ H2} ∩ S1,

finally, for Case (3) it is:

MP = (S3 ×H∗ \ S1), S1 = {(x, a) ∈ H2 : a ∈ U(1)× {0} ∪ {0}× U(1)},

S2 = {(x, 0) ∈ H2} S3 = S4 = ∅.

5.5.3.2 The multi-moment maps

Before computing the multi-moment maps, we write the explicit form of the projection
to the T2-quotient: πT2 . In S3 ×H∗, these take the form:

πT2 : S3 × S3 × R+ → S2 × S2 × R+ (p, q, r) 󰀁→ (v, w, r),

where, for Case (1) v = pip, w = qiq, for Case (2) v = qp̄ipq̄, w = qiq̄ and, for Case (3),
v = pip̄, w = pq̄iqp̄. The multi-moment maps, which pass to the T2-quotients, are:

Case (1) Case (2) Case (3)
ν 2

√
3r2〈v, w〉R3 −

√
3
2
(3c+ 4r2)〈v, w〉R3 −2

√
3r2〈v, w〉R3

θ1
√
3
4
(3c+ 4r2)v

√
3r2v

√
3
4
(3c+ 4r2)v

θ2 −
√
3r2w −

√
3r2w −

√
3r2w

θ3 −3r2(c+ r2)1/3v ×R3 w −3r2(c+ r2)1/3v ×R3 w 3r2(c+ r2)1/3v ×R3 w

.

5.5.3.3 T2-invariant associatives

The description of the T2-invariant associatives follows exactly as in the FHN manifolds.
For instance, we obtain the following result for Case (1).

Theorem 5.5.6 (Aslan–T. [6]; T2-invariant associatives in Bryant–Salamon manifolds).
Consider the stratification, as given in Section 5.1.1, of the Bryant–Salamon space into
MP ∪ S1 ∪ S2 ∪ S3 ∪ S4 with respect to the T2 × SU(2)-action of Case (1). Then, each
strata decomposes into T2-invariant associatives in the following way:

• MP is fibred by T2-invariant associatives which are horizontal lifts of level sets of
|µ| = 3r2(c+ r2)1/3 sin θ in B ∼= (0, π)×R+, where θ is determined by cos θ = 〈v, w〉
and v, w are images of the Hopf maps: (v = pip̄, w = qiq̄) ∈ S2 × S2. The topology
of these associatives is T2 ×R and they do not intersect the zero section.
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• S1 admits a fibration over S2∪S2 with totally geodesic T2-invariant associative fibres
of topology T2 ×R. These associatives extend smoothly to associatives of topology
S1 × R2 in M .

• S2 is the zero section, which is an associative totally geodesic group orbit of topology
S3.

• S3 = S4 = ∅.

Remark 5.5.7. The associatives of topology S1 × R2 were independently constructed by
Fowdar in [33]. The author also constructed a similar family in the BGGG manifolds.

5.5.3.4 T3-invariant coassociatives

Up to an element of the autormorphism group, we can choose, for all the three cases, the
torus T3 acting on (x, a) ∈ S3 × R4 as follows:

(λ1,λ2,λ3)(x, a) 󰀁→ (λ1xλ̄3,λ2aλ̄3),

where all the λis are generated by multiplication by i.
It is straightforward to see that the singular set of this action, S, is given by the zero

section and the following subset:

SP =
󰀋
(x, a) ∈ S3 ×H : x, a ∈ (C× {0} ∪ {0}× C) ⊂ C× C

󰀌
,

In the singular set, the stabilizer is everywhere 1-dimensional apart from the points in:

󰀋
(x, 0) ∈ S3 ×H : x ∈ (C× {0} ∪ {0}× C) ⊂ C× C

󰀌
,

where the stabilizer is 2-dimensional.
By Proposition 5.4.3, the T3-invariant coassociatives are given by the level sets of the

map (θ11, θ
2
1, ν), which is explicitly given by:

(p, q, r) 󰀁→
󰀣√

3

4
(3c+ 4r2)v1,−

√
3r2w1, 2

√
3r2〈v, w〉R3

󰀤
,

where v, w ∈ S2 ⊂ R3 are defined accordingly to (1). By Theorem 5.4.5, the T3-
invariant coassociatives are smooth topological T3 ×R, apart from the ones intersect-
ing the points with one or 2-dimensional stabilizer, which are smooth T2 ×R2s and
T2 ×R × R+ cones, respectively. The intersection with the 2-dimensional stabilizer oc-
curs only to the preimages of {(±3

√
3

4
c, 0, 0)}. The T3-invariant coassociatives intersecting
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Figure 5.6: Blue: The level sets of |µ| = 3r2(c+r2)1/3 sin θ in B = (0, π)×R+. Every level
set represents an SU(2)-family of T2-invariant associatives in MP . Orange: The level sets
of ν = 2

√
3r2 cos θ. Every level set represents an S2 family of T3-invariant coassociatives

in MP . The vertical line represents the ones intersecting the zero section, two of these
T3-invariant coassociatives are singular.

the 1-dimensional stabilizer are the ones corresponding to the fibres of the following set:
{(x, 0, 0) : x ∈ (−3

√
3c
4

, 3
√
3c
4

)} ∪ A, where A is:
󰀫󰀣

±
󰀣
3
√
3c

4
+ a

󰀤
,−a,±2a

󰀤
: a ∈ R+

󰀬
∪
󰀫󰀣

±
󰀣
3
√
3c

4
+ a

󰀤
,+a,∓2a

󰀤
: a ∈ R+

󰀬

5.5.3.5 SU(2)-invariant coassociatives

One can compute ϕc(V1, V2, V3) for Case (1), Case (2) and (3). This vanishes only when
c = 0 in Case (1) and Case (3), while for Case (2) it is always vanishing. We deduce
that SU(2)-invariant coassociatives are given by fibres of the standard projection to S3
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(cfr. [49, Section 4]).

5.5.3.6 Another family of associative submanifolds

The associatives fibres of S1 → S2 in Theorem 5.5.6 are products of a plane in R4 times
a geodesic in S3. In general, one can take any 2-dimensional vector subspace W ⊂ R4,
spanned by the orthonormal vectors w1, w2, and observe that w1×w2 is tangent to S3. For
every p ∈ S3, we can consider γW,p to be the unit length geodesic starting at p with velocity
w1×w2, and observe that γW,p×W is an associative submanifold. These examples are not
only part of the family of T2-invariant associative submanifolds, but also of the following
family, where each associative contains an affine plane W̄ := W ⊕ x in R4. Here, W is
a 2-dimensional vector subspace of R4 and x is in the Euclidean perpendicular subspace
W⊥. The orthogonal complement W⊥ carries a unique positive complex structure, so we
can define the curve contained in it:

δW,x(t) = e−i t
2x.

Proposition 5.5.8. Let p be a point in S3, W̄ = W ⊕ x be an affine plane with x ∈ W⊥.
The unique associative containing {p}× W̄ is

N := {(γW,p(t), y, δW,x(t)) ∈ S3 ×W ×W⊥ | y ∈ W, t ∈ R}.

Proof. As the uniqueness follows immediately from the local existence and uniqueness the-
orem, we only need to prove that N is an associative submanifold. We use the parametri-
sation of S3×R4 as in Section 2.2.4.2. By applying elememts of the automorphism group
SU(2)3, we can assume without loss of generality that W = {a2 = a3 = 0}. More-
over, we choose a left-invariant frame {E1, E2, E3} on S3 such that the tangent space of
N is spanned by {∂a0 , ∂a1 , e1 − (a3∂a2 − a2∂a3)/2} at any point of N . We conclude as
∗ϕ(e1 − (a3∂a2 − a2∂a3)/2, ∂a0 , ∂a1 , ·) = 0 at any point of N .

In particular, Proposition 5.5.8 extends the description of possibly twisted calibrated
subbundles in manifolds of exceptional holonomy which was started by Karigiannis, Leung
and Min-Oo in [48, 50].
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