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Abstract

In this thesis, we discuss some aspects of calibrated geometry in manifolds
of exceptional holonomy. Manifolds of exceptional holonomy are Riemannian
manifolds that are endowed with one of the following additional structures:
a torsion-free Gy-structure or a torsion-free Spin(7)-structure. G manifolds
admit two special families of calibrated, hence volume minimizing, subman-
ifolds: associative 3-folds and coassociative 4-folds. Spin(7) manifolds admit
only one family of calibrated submanifolds: Cayley 4-folds. Understanding
the geometry of such calibrated submanifolds is one of the key challenges in

the study of manifolds with exceptional holonomy.

After recalling some basic notion on calibrated geometry and manifolds of
exceptional holonomy, we define calibrated fibrations, and we prove a rigidity

result for these objects under some linear condition.

Then, we describe the construction of two Cayley fibrations in the Bryant—
Salamon Spin(7) manifold using a cohomogeneity one method. These are the
first explicit examples of Cayley fibrations in a non-flat Spin(7) manifold and

the fibres provide new examples of Cayley submanifolds.

Finally, we study the geometry of calibrated submanifolds in Gs manifolds that
admit T? x SU(2)-symmetry. We apply our results to C* x S, to the Bryant—
Salamon manifolds and to the manifolds recently constructed by Foscolo—
Haskins Nordstrom, where our analysis gives new large families of T*-invariant

associatives. This is based on joint work with B. Aslan.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Riemannian holonomy and Berger’s list

Given a connected Riemannian n-manifold (M", g) and a point € M, the Levi-Civita

connection induces the group:
Hol,(g) :={Py, C O(T, M) : v is a loop based at =},

where P, denotes the parallel transport along «. It is fairly easy to see that such a group
is a Lie group and it is independent from x up to conjugation. Hence, it makes sense
to call it the Riemannian holonomy group of (M, g), Hol(g), and to regard it as a Lie
subgroup of O(n,R), defined up to conjugation.

A natural question that arises is the following:

Question 1.1.1. What are the subgroups of O(n,R) that can appear as the Riemannian

holonomy group of some Riemannian manifold (M™, g)7

Before approaching Question 1.1.1, we need the following observations. Firstly, it is
sensible to recast Question 1.1.1 assuming M™ to be simply-connected. Indeed, Hol(g)
naturally encodes information on the fundamental group of M, m;(M), as the loops in
the definition of holonomy do not need to be homotopic to the constant path. The formal

way around it is by considering the restricted holonomy group:
Hol%(g) := {P, C O(T,M) : ~y is a loop based at z homotopic to the constant path},

which can be shown to be a normal Lie subgroup of Hol,(g) and that coincides with the

identity component of Hol,(g). The groups Hol(g), Hol’(g) and 7, (M) are related by the



group homomorphism:

¢ - m (M) — Hol(g)/ Hol(g)
Y] — P, - Holo(g).

Secondly, it is straightforward to verify that, if (M™, g) = (M; x Ms, g1 X g2) then,
Hol(g) = Hol(g1) x Hol(gz). More surprisingly, the converse holds locally, i.e., if the
Riemannian holonomy group of (M", g) is reducible as a representation on R™, then, M"
is locally isometric to a Riemannian product. As we are interested in the "building blocks"
of the holonomy group, we will assume in Question 1.1.1 that (M™, g) is irreducible, i.e.
that it is not locally isometric to a Riemannian product.

Finally, we will restrict ourselves to Riemannian manifolds which are nonsymmetric,
i.e. that are not locally isometric to a Riemannian symmetric space. The reason is that
the holonomy group of a simply-connected Riemannian symmetric space can be easily
deduced from its structure. Moreover, symmetric spaces were completely classified by
Cartan in [20,21] (cfr. [13, Chapter 7.H]| for a list of this classification).

We refer the reader to [13,46,52,53] for further details on the Riemannian holonomy
group, its properties and the assumptions that we have discussed.

We are now ready to answer Question 1.1.1.

Theorem 1.1.2 (Berger [12]). Let (M",g) be a simply-connected, irreducible, nonsym-

metric Riemannian manifold. Then, one of the following is satisfied:
1. (Generic case) Hol(g) = SO(n),
2. (Kahler case) Hol(g) = U(m) C SO(n), where n = 2m for some m € N ,
3. (Calabi-Yau case) Hol(g) = SU(m) C SO(n), where n = 2m for some m € N,
4. (Hyperkahler case) Hol(g) = Sp(m) C SO(n), where n = 4m for some m € N,

5. (Quaternionic Kéhler case) Hol(g) = Sp(m) - Sp(1) € SO(n), where n = 4m for

some m € N,
6. (G case) Hol(g) = Gy C SO(7),
7. (Spin(7) case) Hol(g) = Spin(7) C SO(8).

Since Gy and Spin(7) do not come in a countable family depending on the dimension of
the Riemannian manifold, these groups are usually referred to as the exceptional holonomy

groups, and will be the central objects of this thesis. Intuitively, the reason behind this
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phenomenon boils down to the octonionic nature of Go and Spin(7) and the fact that
putting an @-module structure on Q" is not really a sensible idea, as O is a non-associative
normed division algebra.

Observe that, a priori, not all the groups in Theorem 1.1.2 need to be the Rie-
mannian holonomy of some (M, g). For instance, the original Berger’s list contained
Spin(9) C SO(16) as well. However, Alekseevskii [4] and Brown—Gray [17] ruled out this
case by showing, independently, that Riemannian manifolds with holonomy Spin(9) need
to be symmetric. All the remaining elements of Berger’s list are attained, i.e. they are
the Riemannian holonomy group of some Riemannian manifold (M, g). For further in-
formation on the Berger’s list and examples with a given holonomy, we direct the reader
to [13,46,67] and references therein.

1.1.2 The holonomy principle and calibrated geometry

Assume that (M, g) is a Riemannian manifold with holonomy some given Lie group G.
The definition of Riemannian holonomy group does not necessarily enlighten on how such

condition shapes the geometry of M.

Question 1.1.3. Can we translate the condition on Hol(g) to a more tangible property of

the Riemannian manifold?

The answer to this question is given by the holonomy principle. Roughly speaking, it

says that Hol(g) determines the parallel tensors of M and vice versa.

Proposition 1.1.4 (Holonomy principle). Let (M, g) be a Riemannian manifold and let
E =T M &' T*M be endowed with the natural connection induced from the Levi-Civita
connection. If S € I'(E) is such that V.S = 0, then, S, is fized by the natural extension
of the action of Hol(g) on E,, for every p € M. Conversely, if A € E, is fixed by the
natural extension of the action of Hol(g), then, there exists a unique S € T'(E) such that
VS=0and S, =A.

Corollary 1.1.5. Let (M, g) be a simply-connected, irreducible, nonsymmetric Rieman-
nian manifold and let p € M fized. If G C SO(T,M) is the subgroup that fizes S, for
every parallel tensor S, then, G = Hol,(g).

A straightforward consequence of the holonomy principle is that Riemannian mani-
folds with holonomy in the Berger’s list come equipped with parallel (and hence closed)
differential forms, which, up to rescaling, can be assumed to have co-mass 1. Differen-
tial forms satisfying these conditions are calibrations and determine a special family of

volume-minimizing submanifolds: calibrated submanifolds.
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Calibrated geometry was introduced by Harvey and Lawson in their seminal work [37],
where they also highlighted its connection to Riemannian holonomy. We give further
details on calibrated geometry in Section 2.1, where we also sum up the calibrations that

arise in manifolds with special holonomy (cfr. Example 2.1.7).

1.1.3 Exceptional geometries and calibrated submanifolds

We now turn our attention to the exceptional Riemannian holonomy groups Go and
Spin(7). From Section 1.1.2, one can prove that manifolds with Gy holonomy have a
calibrating 3-form, ¢, and a calibrating 4-form, %y, which is simply the Hodge dual
of ¢. Submanifolds calibrated by ¢ are called associative submanifolds, while the ones
calibrated by *¢ are called coassociative submanifolds. Manifolds with Spin(7) holonomy
only have one calibrating 4-form, ®, whose calibrated submanifolds are called Cayleys.

As mentioned in Section 1.1.1, the groups Go and Spin(7) are attained as the Rieman-
nian holonomy group of some Riemannian manifold. Indeed, Bryant provided the first
incomplete examples in [18|, Bryant—Salamon constructed the first complete non-compact
ones in [19] and Joyce settled the compact case in [43-45]. Since then, much effort has
been spent to construct new Go and Spin(7) manifolds and, now, we have a large variety
of complete manifolds with such holonomy groups (see for instance |9, 10, 14, 23-25, 30—
32,34,47,56] and many more). Of particular interest are the G, manifolds recently con-
structed by Foscolo-Haskins—Nordstrém in [32] (cfr. Section 2.2.5). Indeed, this family
extends all the previously known (apart from [31]) complete non-compact examples and
they are explicit up to solving a system of ODEs.

A different story holds for complete calibrated submanifolds, where only a handful
of them are known compared to the number of Gy and Spin(7) manifolds. Here is a
brief description of all the previously known examples. In the local model, R” and R,
calibrated submanifolds were constructed by Harvey-Lawson and Lotay assuming coho-
mogeneity one symmetry [37,59,61|, by Lotay assuming the submanifold to be ruled [60]
and by Ionel-Karigiannis—Min-Oo assuming the submanifold to be a vector subbundle [42].
The first non-trivial examples of calibrated submanifolds in a non-flat manifold of excep-
tional holonomy were constructed on the Bryant-Salamon manifolds of topology A2 (S%),
A? (CP?) and $_(S*) by Karigiannis—Min-Oo [50], extending [42] to the non-flat setting.
On the Bryant—Salamon manifolds of topology A% (X)) cohomogeneity one techniques were
used by Kawai [51] and Karigiannis-Lotay [49] to produce coassociative submanifolds. For
what concerns compact manifolds, the only closed calibrated submanifolds are described
in [11,23,28,36,43-45].



One of the main goals of this thesis is to produce new examples of calibrated submani-
folds in non-compact manifolds of exceptional holonomy. In particular, we construct large
families of Cayley submanifolds on the Spin(7) Bryant-Salamon manifolds (cfr. Chap-
ter 4) and large families of associative submanifolds on each Gy manifold constructed
by Foscolo-Haskins—Nordstrém (cfr. Chapter 5). Often, the calibrated submanifolds
that we construct form a calibrated fibration, which is, roughly speaking, a fibre bundle
with calibrated fibres up to a measure zero set (cfr. Definition 3.1.5). These objects
have been widely studied both because of their connection to physics (cfr. Section 1.1.4)
and because one could hope to construct new manifolds with exceptional holonomy from
them [2,8,27,49,57]. In this direction, Donaldson [27] studied coassociative fibrations and
Cayley fibrations under an "adiabatic limit", i.e. when the volume of the fibres is sent to
zero. In Chapter 3, we consider a sort of opposite procedure, i.e. we study coassociative

and Cayley fibrations with some natural linear structure.

1.1.4 Exceptional holonomy in mathematical physics

Apart from being interesting mathematical objects, manifolds with exceptional holonomy
have also drawn the attention of mathematical physicists and are now widely studied by
that community as well.

A first reason for their interest is that a Riemannian manifold, (M, g), with Riemannian
holonomy Go and Spin(7) (but also SU(m), Sp(m)) needs to have vanishing Ricci tensor
[4], and Ricci-flat manifolds are (positive definite) solutions of Einstein’s field equations
in vacuum, with vanishing cosmological constant. To highlight the importance of this
phenomenon, we remark that all the known examples of Ricci-flat compact nonsymmetric
Riemannian manifolds have holonomy SU(m), Sp(m), G2 or Spin(7). More details on
Ricci-flat manifolds can be found in [13] and references therein.

A second connection between exceptional holonomy and mathematical physics comes
from string theory and the relative generalizations. Roughly speaking, supersymmetric
string theory (M-theory, F-theory) claims that the universe should be a 10-dimensional
(11-dimensional, 12-dimensional) fibre bundle over an Einstein space-time and the fibres
should be compact and very small manifolds with holonomy SU(3) (Ga, Spin(7)). This
additional dimensions, parametrizing the manifold with special holonomy, should corre-
spond to the space where "quantum phenomena" occur.

One of the most important conjectures string theorists are interested in is mirror
symmetry. It is outside of the scope of this thesis to give a precise account of this
conjecture. An introduction to string theory and mirror symmetry for "dummies", as

the author claims (but still quite out of reach for me), can be found in [46, Chapter 9].



What matters is that a geometrical interpretation of mirror symmetry was proposed by
Strominger—Yau—Zaslow in [70] for supersymmetric string theory and, afterwards further
generalized to M-thory and F-theory by Gukov—Yau-Zaslow in [35]. Their idea was to
interpret "mirror phenomena" in terms of calibrated fibrations, as defined in the previous
section. Even though the SYZ conjecture and generalizations have received the tireless
attentions of both mathematicians and physicists (cfr. for instance [1,3]), it still looks

inaccessible at the moment.

1.2 Overview of the thesis

1.2.1 Chapter 2: calibrated geometry and exceptional holonomy

In Chapter 2, we cover the preliminaries for the rest of the thesis. As a first step, we
recall the definition of calibration, of calibrated (current) submanifold and we prove that
calibrated submanifolds are volume-minimizing in their homology class. Moreover, we
provide the list of calibrated submanifolds that arise in manifolds of special holonomy via
Proposition 1.1.4.

Afterwards we turn our attention to manifolds with holonomy group contained in
G,. Using Corollary 1.1.5, we characterize them as the 7-manifolds admitting a partic-
ular closed and co-closed 3-form, the Go-structure, and we show how it induces a cross
product on the tangent bundle. Then, we turn our attention to associative and coasso-
ciative submanifolds, i.e. the submanifolds calibrated by one of the two characterizing
forms, respectively. After providing some basic properties of these objects, we recall some
machinery of geometric measure theory for currents with symmetry. We conclude our
discussion on Gs manifolds with a brief description of the Bryant—Salamon manifolds of
topology 5% x R* [19] and of the Foscolo-Haskins—Nordstrém manifolds [32].

Similarly to the Gy setting, we use Corollary 1.1.5 to characterize manifolds with
holonomy contained in Spin(7) as the 8-manifolds admitting a particular closed 4-form,
the Spin(7)-structure, which induces a triple cross product on the tangent bundle. Sub-
sequently, we give a short introduction to Cayley submanifolds, i.e. the submanifolds
calibrated by the Spin(7)-structure, and we give a concise description of the Spin(7)
Bryant—Salamon manifolds.

We conclude this chapter recalling the theory of multi-moment maps introduced by
Madsen and Swann in [62,63]. Multi-moment maps are natural extensions of symplectic
geometry’s moment maps to manifolds that possess a generic closed form. The idea is to
take generators of the automorphism group and contract them with the given closed form

to reduce its degree to 1. Now, if the resulting 1-form is exact, it can be integrated to a



function: a multi-moment map. Since it is not true that for all generators the induced
1-form needs to be exact, Madsen and Swann introduced the notion of kth Lie kernel to

overcome this issue.

1.2.2 Chapter 3: calibrated fibrations and linear calibrated vec-
tor bundles

The first part of Chapter 3 is devoted to the mathematical notion of calibrated fibrations.
The "naive" way to define calibrated fibrations is by assuming that the manifold is a
locally trivial fibre bundle with calibrated fibres. After recalling Baraglia’s nonexistence
result for locally trivial coassociative fibrations [8|, we provide a more general definition of
calibrated fibrations (cfr. Definition 3.1.5), which is inspired by the work of Karigiannis—
Lotay [49]. This second definition allows the fibres to be singular and to intersect.

In |27], Donaldson characterized locally trivial coassociative fibrations and Cayley
fibrations (cfr. Proposition 3.1.2 and Proposition 3.1.3) as fibre bundles endowed with
an Ehresmann connection and suitable tensors related by a system of PDEs. He studied
such a system by taking an "adiabatic limit", i.e. letting the size of the fibres approach
zero. Under such a procedure, the system de-couples and can be solved completely. Via a
perturbation argument, he used the solutions of the adiabatic system to obtain solutions
of the original problem.

As a dual approach, if we let the size of the fibres explode, one should obtain in the
limit a locally trivial coassociative (Cayley) fibration with a compatible vector bundle
and Ga-structure (Spin(7)-structure). In the remaining part of this chapter we take first
steps towards a classification of these "linear coassociative fibrations" ("linear Cayley
fibrations"). In particular, we show that under some isotropic condition the only lin-
ear coassociative (Cayley) fibrations are deformations of the Bryant—-Salamon manifolds
described in Section 2.2.4 and Section 2.3.3 (cfr. Theorem 3.2.6 and Theorem 3.3.5).

1.2.3 Chapter 4: Cayley fibrations in the Bryant—Salamon Spin(7)
manifolds

In Chapter 4, we describe the first explicit examples of Cayley fibrations in a non-flat
Spin(7) manifold: the Bryant-Salamon Spin(7) manifold ($_(S?*),®.). This chapter is
based on the author’s paper [71].

The main technique for the construction is a cohomogeneity one method, which reduces

the problem to a system of ODEs in the orbit space. The actions that we consider are the



3-dimensional subgroups of the automorphism group Aut(M,®.) = Sp(2) x Sp(1) that
do not sit diagonally in it (cfr. Section 2.3.3.3):

G X Idsp(l) C Sp(?) X Sp(l), IdSP(Q) X Sp(l) C Sp(Q) X Sp(l),
where G is the double lift to Sp(2) = Spin(5) of one of the following subgroups of SO(5):
SO(3) x Idy, Sp(1) x Id;, SO(3) acting irreducibly on R®.

In each section, we deal with one of the aforementioned actions, sarting with Idgp2) X
Sp(1) in Section 4.1, where the fibration is the natural vector bundle projection: 7 :
g (81 — st

Section 4.2 is the first non-trivial case, where we consider the action induced from
SO(3) x Idy. The first crucial idea is to parametrize the sphere S* according with the
splitting R? @ R?, so that SO(3) x Idy only acts on the first component. This parametriza-
tion induces a trivialization of the bundle §_(S*). After computing how the Sp(1)-action
lifts in this trivialization (Section 4.2.3), we notice that the Hopf fibration map on the
fibres is compatible with the action and, hence, we reparametrize the fibres according to
it. We are then able to find the ODE system for Cayley submanifolds (Section 4.2.7)
after a diagonalizing change of frame (Section 4.2.6). The system of ODEs that we obtain
is well-behaved and can be completely integrated (Proposition 4.2.18). The geometrical
information that we can obtain from the system is derived in Section 2.3.3. In particu-
lar, we deduce that the base space of the fibration is S* and that the fibres are smooth
complete Ocp1 (—1)s, smooth complete S? x R or conically singular R%s. A summary of
all this is given in Theorem 4.2.20 (Theorem 4.2.21 for the conical case).

In Section 4.3 we deal with the action induced from Sp(1) x Id;. As for the pre-
vious case, after appropriate choices of a parametrization (Section 4.3.1, Section 4.3.3,
Section 4.3.4) we are able to find a well-behaved system of ODEs. In this case, it is not
completely integrable, but reduces to a autonomous system on the plane that we can
study via a dynamical system argument. From the ODE system, we deduce that the
fibration is parametrized by S* and that the fibres are smooth complete S® x R or smooth
complete R*. The geometry of the Cayley fibration is encapsulated in Theorem 4.3.8
(Theorem 4.3.9 for the conical case).

The remaining group is Sp(1) induced from the irreducible action of SO(3) on R®. In
this case, a suitable choice of parametrization is not available, hence, we fail to provide a
Cayley fibration (cfr. Section 4.4 for further details).

For each of these actions we compute the associated multi-moment map. Unfortu-

nately, there is no clear interpretation of these maps in terms of the fibration.
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1.2.4 Chapter 5: calibrated geometry in G, manifolds with
T? x SU(2)-symmetry

Chapter 5, based on a joint work with B. Aslan, is devoted to Go manifolds that admit a
cohomogeneity two, structure-preserving T? x SU(2)-action. Before going into the details
of it, we recall that the Bryant-Salamon manifolds of topology #(S%) and the complete
manifolds constructed by Foscolo-Haskins—Nordstrom have the desired symmetry. Hence,
we have a large family of examples falling into this class.

As a first step, we study the geometry of a structure-preserving and cohomogeneity
two T? x SU(2)-action on a Gy manifold, (M, ¢). For the sake of clarity, in this section
(and only in this section) we assume that the action is effective. This avoids the technical
problem of passing to suitable quotients. We show that the principal stabilizer of the
T? x SU(2)-action is trivial and that there are no exceptional orbits, i.e. there are no
points with non-trivial discrete stabilizer. Moreover, the singular part, i.e. the set where
the stabilizer is not trivial, further splits into 4 strata, which are characterized by the

dimension of the stabilizer. Explicitly, we have:
M=MpUS USUS3US,,

where Mp is the principal part and S; are embedded submanifolds characterized by having
i-dimensional T? x SU(2)-stabilizer at each point. The dimension of Sy is 1, of Ss is 3, of
S, is 3 and of &7 is 5. We conclude the first section by studying the properties of the multi-
moment maps associated to T? x SU(2), which are v (relative to ¢ and T 2 T? xIdgy(y)),
0 (relative to ¢ and S* x ST C T? x SU(2)), i (relative to *¢ and T? xS* C T? x SU(2))
and 7 (relative to *p and Idp x SU(2)).

In Section 5.2, we focus on the local characterization of Gy manifolds with T? x SU(2)-
symmetry. Our analysis is based on Madsen and Swann’s work in the T*-case [62]. There,
they used Hitchin’s flow [41] to locally recover G, manifolds with T?-symmetry from
a coherently tri-symplectic four-manifold (see Definition 5.2.2) endowed with a suitable
R2-valued 2-form. Since the enhanced SU(2)-symmetry passes to such a four-manifold,
we conclude (Theorem 5.2.9) that Gy manifolds with T? x SU(2)-symmetry are locally
characterized by two nested system of ODEs (the Hitchin’s flow and the one for coherently
tri-sympliectic four manifolds with SU(2)-symmetry) and a suitable R?-valued two form.
Note that this system can always be locally solved under some real-analyticity condition.

Afterwards, we turn our attention to cohomogeneity one calibrated submanifolds. In
particular, we consider T? x Idgy9)-invariant associatives (Section 5.3), T* x Sl-invariant

coassociatives and Idpz x SU(2)-invariant coassociatives (Section 5.4).



For what concerns finding T? xIdgy(g)-invariant associatives, we show that the problem
splits with the aforementioned stratification and that p is a first integral of the induced
ODE system. As a consequence of this, together with the slice theorem, we prove that
(cfr. Theorem 5.3.5 and Theorem 5.3.9):

S3 U S, is an associative submanifold,

S, is an associative submanifold,

S admits a T?invariant submersion F : S; — S2, with associative fibres,

e T -invariant associatives project in B := Mp/(T* x SU(2)) to level sets of |u| and

they can be recovered from such level sets up to an horizontal lift.

Along the way, we show that the aforementioned associatives are all smooth, and we
discuss when they form a calibrated fibration.

It was observed by Madsen and Swann in [64] that T? xS'-invariant coassociatives
are the level sets of some components of the multi-moment maps # and v. We observe
that these coassociatives project on B to the level sets of v and, since (u,|v|) : B —
R? is a local diffeomorphism, they form together with the T?invariant associatives a
local associative/coassociative parametrization of B (Corollary 5.3.10). We conclude our
discussion on T*-invariant associatives by showing that all singular points admit a tangent
cone modelled on the Harvey—Lawson cone times R.

Differently from the other cases, SU(2)-invariant coassociatives only exists when ¢
vanishes on the orbits of the SU(2)-action and do not correspond to level sets of multi-
moment maps on B. However, we manage to show, using geometric measure theory that
when they exist they are all smooth.

We conclude this chapter applying our results to C* x S!, the Foscolo-Haskins-
Nordstrém manifolds and the Bryant-Salamon manifolds of topology $(S®) (cfr. Sec-
tion 5.5). In addition, we also extend the (possibly twisted) vector subbundle construction

to the Bryant—Salamon manifolds of topology $(S?).
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Chapter 2

Calibrated geometry and exceptional
holonomy

In this chapter, we provide a brief overview of calibrated geometry, manifolds with Rie-
mannian holonomy group Gs, manifolds with Riemannian holonomy group Spin(7) and
their relation.

In particular, we review the first definitions and properties of calibrated submanifolds
and of manifolds with holonomy Gy and Spin(7), together with the examples constructed
by Bryant and Salamon [19] and by Foscolo, Haskins and Nordstrém [32]. We recall that
G and Spin(7) manifolds admit natural calibrations and calibrated submanifolds, called
associatives and coassociatives in the former and Cayleys in the latter [37]. We review
some basic properties of such calibrations and calibrated submanifolds.

Finally, we discuss some generalization of the classical notion of moment maps in
symplectic geometry due to Madsen and Swann [62,63]. These objects, called multi-

moment maps, will play a crucial role in Chapter 5.

2.1 Calibrated geometry

Let (M, g) be a Riemannian manifold. We recall the definition, due to Harvey and Lawson

[37], of calibrations, calibrated currents and calibrated submanifolds.
Definition 2.1.1. A calibration on (M, g) is a k-form, a, on M such that:
e da =0,
o M(a) <1,

where M (a) := sup,ep{a(Xy, ..., Xk) : X; € T, M, |X;| = 1} denotes the co-mass of a.

11



Given a calibration on a Rimennian manifold (M, g), there is a special class of currents
and submanifolds that are determined by the calibration. First, we recall the notion of

locally integer rectifiable currents.

Definition 2.1.2. Let I'.(M, A*T*M) be the space of compactly supported k-forms on
M and let T € (T'.(M,A*T*M))* be an element of its topological dual, i.e. a current.

The current 7' is said to be locally integer rectifiable if there exists:
1. a sequence of C* oriented k-submanifolds, ¥;;
2. a sequence of pairwise disjoint closed subsets, K; C ¥;;
3. a sequence of positive integers k;,
such that:
1. > kHF(K; N Q) < oo, for every 2 compact in M;
2. T(w) =32 ki [i, w for every w € To(M, A*T*M).

In particular, the support of T"is U; K; and at each point p € U; K; we can define ?(p) €
ART, M representing the tangent space of the appropriate 3;.

We are now ready to define the locally integer rectifiable currents that are determined

by the calibration.

Definition 2.1.3. Let (M, g) be a Remannian manifold, and let « be a k-dimensional
calibration on it. A k-dimensional locally integer rectifiable current, 7', is calibrated by «

(also called a-current) if (ay,, ?(p)) = 1 for H*-a.e. point p in the support of 7'

Remark 2.1.4. In the smooth setting, a submanifold X is calibrated by « if and only if

O‘|z = voly.
One of the main reasons behind our interest in calibrated currents (calibrated sub-
manifolds) is that, if they have finite mass (volume), they are homologically-volume min-

imizing.

Lemma 2.1.5 (Harvey—Lawson [37]). Let (M, g) be a Remannian manifold and let « be
a k-dimensional calibration on it. If T has finite mass and it is calibrated by o, then T is
homologically volume-minimizing, i.e. M(T) < M(T") for every T" homologous to T (i.e.
such that T —T" = 08, for some S compactly supported). Equality holds if and only if T'

18 a-calibrated.
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Proof. Let T" and S as in the statement. Then,
M(T)=T(a) = (T +0S)(a) = T'(a) + S(da) = T' (o) < M(T"),

where we used the definition of calibration and calibrated current in the first equality and

in the last inequality. O]

More generally, we deduce that calibrated currents (calibrated submanifolds), non-

necessarily with finite mass (volume), are locally volume minimizing.

Lemma 2.1.6. Let (M,g) be a Remannian manifold and let « be a k-dimensional cali-

bration on it. If T is calibrated by o, then it is locally volume minimizing.

Finding examples of calibration is fairly easy, note, for instance, that o = 0 is a
calibration on any Riemannian manifold. However, it is far less trivial to find calibrations
admitting calibrated submanifolds, or, at least, a "large enough" space of calibrated planes
at each point of M. Interesting examples of such calibrations can be found in manifolds

of special holonomy (cfr. Section 1.1.2)

Example 2.1.7. These are the examples of interesting calibrations arising in manifolds

of special holonomy.

e Let (M,w) be a Kihler manifold. Then, w*/k! is a calibration for every k and the

calibrated submanifolds are the k-dimensional complex submanifolds.

o Let (M,w,Q) be a Calabi-Yau manifold. Then, Re(e?Q) is a calibration for every

6 and the calibrated submanifolds are called special Lagrangians of phase 6.

e Let (M, ) be a Gy manifold. Then, ¢ and *¢ are calibrations and the calibrated sub-

manifolds are called associatives and coassociatives, respectively (cfr. Section 2.2).

e Let (M,®) be a Spin(7) manifold. Then, ® is a calibration and the calibrated
submanifolds are called Cayleys (cfr. Section 2.3).

2.2 Holonomy G,

In this section, we recall some basic results concerning G, manifolds, associative subman-

ifolds and coassociative submanifolds.
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2.2.1 Gy manifolds

The linear model we consider for a Gy manifold is R” & R3*@R* parametrized by (1, x2, 73)

and (ag, a1, as, as), respectively. On R”, we consider the associative 3-form ¢y:

3
wo = dxy N\ dxy N\ des + Zdl’i A €,
i=1
where the ;s are the standard ASD two-forms of R* endowed with the Euclidean metric,
ie., Q; = dag A da; — da; A day, for (i, 7, k) cyclic permuation of (1,2,3). The Hodge dual
of gy in R is also of great geometrical interest:

3
xpg = dag N day N dag N dag — Zd:cj A dxy A€,
i=1
where (i, 7, k) is again a positive permutation of (1,2, 3).
Since the stabilizer of ¢, is isomorphic to Gg, the automorphism group of O, we can

see (R”, g) as the linear model for manifolds with Go-structure group.

Definition 2.2.1. Let M be a manifold and ¢ a 3-form on M. We say that ¢ is a G-
structure on M if at each point & € M there exists a linear isomorphism p, : R” — T, M

which identifies ¢y with g0|$, le., pro = p.
A G structure ¢ induces a metric g, and an orientation vol, on M satisfying:
(iw 0 @) A (iy 0 ) A p = —69,(u, v) voly, (2.2.1)

for all u,v € T,M and all x € M. This makes p, an orientation preserving isometry.
From g, and vol,, one can also construct the coassociative 4-form *,¢. We remand the
reader to [66] for further details.

Definition 2.2.2. Let M be a manifold and let ¢ be a Go-structure on M. (M, ) is a
Gy manifold if the Gy-structure is torsion-free, i.e., ¢ and *,¢ are closed (or, equivalently,

if o is closed and co-closed).

Note that Fernandez and Gray showed in [29] that ¢ is closed and co-closed if and
only if ¢ is parallel. Hence, by Proposition 1.1.4, (M, g,,) is a Gy manifold if and only if
Hol(g,) C Ga.

Proposition 2.2.3 (Bonan [15]|, Alekseevsky [4]). Every Go manifold is Ricci-flat.

The octonionic nature of the tangent space equips the tangent bundle with a natural

cross product.
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Definition 2.2.4. Let (M, ¢) be a manifold with a Gg-structure. The cross product on

the tangent bundle x, is defined as follows:

Xo TMxTM —TM
<U7 V) - (iVOiU(p>#7

where # denotes the Riemannian musical isomorphism.

In particular, if U, V', W are vector fields on M, then, U x,, V is characterized by the

following equation:

QO(U, V, W) = g«p(U X V, W)

2.2.2 Associative and coassociative submanifolds

Given a manifold with a Go-structure, (M, p), it is clear that ¢ and xp have co-mass

equal to one. It follows that, if (M, ¢) is a Gy manifold, then, ¢ and *¢ are calibrations.

Definition 2.2.5. Let F' C (R”, ¢g) be a 3-dimensional vector subspace. F' is an associa-

tive plane if ¢g|,, = volp. A submanifold L of a Gy manifold (M, ¢) is associative if it is

I
calibrated by ¢, i.e. gp‘L = voly,.

Definition 2.2.6. Let F' C (R7, ) be a 4-dimensional vector subspace. F is a coasso-

| » = volp. A submanifold ¥ of a Gy manifold (M, p) is coassociative

if it is calibrated by xy, i.e. >|<<p|E = voly.

ciative plane if *(pg

Remark 2.2.7. Obviously, X is associative or coassociative if and only if 7,2 is an as-

sociative or a coassociative plane of (R7, ) for every # € ¥ under the isomorphism
Pz-

We now state some well-known properties of associative and coassociative planes which

will be useful in the discussion below.

Proposition 2.2.8 (Harvey-Lawson [37]). Let F' C (R”, ) be a 3-dimensional subspace.

Then, the following are equivalent:
1. F' is an associative plane,
2. Ft is a coassociative plane,
3. ifu,v € F, then, u Xy, v € F,
4. ifu€ F and v € F*+, then, u X,y v € F*,

15



5. if u,v € Ft, then, u Xy, v € F,
6. if u,v,w € F, then, iy 01y, 0y *uy Yo = 0
7. if u,v,w € FX, then, iy 01y 0 4,900 = 0.

Moreover, it follows that for every u,v linearly independent vectors of RT there ewists a
unique associative plane containing them. Analogously, if u,v,w are linearly independent
vectors of R™ such that @o(u, v, w) = 0 there exists a unique coassociative plane containing

them.

It is clear that we can translate this statement to the tangent space (7, M, gp!w) of a
Gy manifold through p,. Moreover, one can also obtain the following local existence and

uniqueness theorem.

Theorem 2.2.9 (Local existence and uniqueness; Harvey—Lawson [37]). Let N be a real
analytic submanifold of a Go manifold (M, ). If N is 2-dimensional, then, there exists
a unique associative real-analytic submanifold L such that N C L. If N s 3-dimensional

and go‘N = 0, then there exists a unique coassociative real-analytic submanifold 3 such

that N C X.

2.2.3 Blow-up of associatives and coassociatives with symmetries

In this subsection, we recall some preliminary results that we will use to study the singu-
larities of associative and coassociative submanifolds with symmetries.
The first result, due to Madsen and Swann, claims that the blow-up of any torsion-free

Go-structure converges to the standard local model.

Theorem 2.2.10 (Madsen—Swann [64]). Let g be the standard Gy-structure of RT and
let @ be a torsion-free Go-structure on By(0) C R” such that p(0) = ¢o(0). Then, for
t > 0, the rescaled Gy-structure oy = t=3\;¢ is such that @1 = ¢ and we have that
0 — 0o as t — 0 on By(0) in the C*-norm for every k > 0, where \;(x) := tx for every
x € R". Moreover, the same holds for the ps-induced Riemannian metric g; =t *\jg and
dual form (xp); = t=*\; (%), where g is the Riemannian metric induced by ¢ and * is

the relative hodge dual.

Moreover, Harvey and Lawson showed that under the blow-up procedure calibrated

currents remain calibrated, and converge to a calibrated tangent cone.
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Theorem 2.2.11 (Harvey-Lawson [37]). If L is a @-calibrated current in (Bs(0), ),
then, Ly := (M\-1)3L(=t7'L) is a @s-calibrated current in (By(0),¢;) for every t € (0,1].
Moreover, if 0 € supp(L), then, L; converges in the sense of currents, up to subsequences,
to a po-calibrated non-empty tangent cone C. The same result holds for xp-calibrated

currents.

Proof. Let p € supp(L;) and let Xi, X5, X3 be an oriented orthonormal basis of the
approximate tangent space of L; at p. Then, tp € supp(L) and X7, X5, X3 is an oriented
orthonormal basis of L at tp, where we identified the approximate tangent spaces of L and
L, as vector subspaces of R”. Hence, the first part follows from the definition of ¢,. The
remaining is a consequence of the theory of tangent cones for area-minimizing currents
(see [69, Section 7.35]). O

A result due to Simon [68, Corollary p. 564], together with Allard’s regularity theorem
(see |69, Chapter 5|), allows us to study the geometry of calibrated currents with mild

singularities.

Theorem 2.2.12. If L is a @-calibrated current in (B(0), ) of density 1 away from 0
and has a tangent cone C' at 0 that is non-singular (i.e. C'\ {0} is smooth), then, C is
the unique tangent cone and, in a smaller neighbourhood of 0, L is smooth everywhere
apart from 0, where the singularity is modeled on C. Moreover, if C is also flat, then L

s smooth at 0. The same result holds for xp-calibrated currents.

Finally, since we will be interested in G-invariant submanifolds, for some compact Lie
group G acting effectively on M, we study how vector fields behave under blow-up. These

vector fields will be chosen to be the generators of the action.

Proposition 2.2.13. Let X be a vector field on (B3(0),¢) such that Lxp = 0. Then,
the rescaled vector field X' := \f X = t71(X o \;) is such that Lxtp; = 0. Moreover, the
same holds for f(t) X", where f € C°(R*;R).

Proof. 1t follows from a straightforward application of Cartan’s formula and A} (ix¢) =

i)\zfX/\IQO. |

Since [X', Y] = N[X,Y] for every X,Y vector fields, the generators of a G-action
defined for ¢ = 1 will give vector fields satisfying the same equations for every ¢ > 0.

Unfortunately, if we let ¢ go to 0, X* does not necessarily converge. Indeed, if we write



for some functions a; on By(0), then,

X'(x) =t a;(tx)d;,
i=1
which does not converge if some a;(0) # 0. However, assuming that X is real-analytic,
we can always find a minimal integer a < 1 such that X* := t*X* converges smoothly to
some non-zero vector field X as t — 0. Clearly, o = 1 if and only if X (0) # 0. Moreover,
if Lxtp, =0, then Proposition 2.2.13 implies 0 = L .0 — L 5.

In a similar fashion, given a 1-form w one can define w;, w; and w.

Lemma 2.2.14. Given three vector fields X,Y,Z on (Bs(0),¢) as in Theorem 2.2.10,
then, fort — 0 the following equations hold:

1. (ix 0ly), =izt Olyipr — i O iyPo,

2. (ix 0ty 0lg % @), =g Olyt Otz * Py — i Oly Ol % .

The following lemma shows that if X is a Killing vector field one can choose coordinates

in which « is either 0 or 1.

Lemma 2.2.15. Let X,... X}, be Killing vector fields on (M, ) generated by an auto-
morphic group action G, such that Xy, ..., X; vanish at p and X1, ..., Xy do not vanish

at p. Then, we can choose normal coordinates around p, such that:

X=X =X;ifi<l,
Xi=X;(0)£0ifi>1+1

and ©(0) = @q. In particular, this means that the oy relative to X' is zero in the first case

and one in the second.

Proof. When 7 > [+ 1, the statement holds in any coordinates and is a direct consequence
of X; being continuous.

Normal coordinates are defined via the exponential map exp,, : B.(0) c T,M - U C
M. Because of the slice theorem, this map is G-equivariant and the stabilizer group G,
has Lie algebra which is generated by Xi,...,X;. So, in normal coordinates, the vector
fields X, ..., X; generate a linear action on 7M. This means they agree with their first
order approximation and the statement follows. We can use the freedom to choose a
basis of T,,M such that ¢(0) = ¢y since GL(7,R) acts transitively on positive 3-forms on
R”. O
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We will be interested in the case where the group G is T? x SU(2), or some discrete
quotient of it. If Uy, U, are the generators of the T?-component and Vi, Vs, Vs are genera-
tors of the SU(2)-component, then, for every [, m = 1,2 and all (7, j, k) cyclic permutation
of (1,2,3), they satisfy:

[Uh UQ] = 07 [Ula Vm] = 07 [‘/7,7 ‘/J] = EZJka:
It follows that the vector fields U?, U, Vi, Vi, Vit are such that:

Vi V] = oo, (22.3)
where q; is the o defining V.

2.2.4 The Bryant-Salamon G, manifold of topology 5% x R*

In this section we describe the Bryant-Salamon Go manifold of topology S3 x R* [19].
In their work, Bryant and Salamon constructed a 1-parameter family of torsion-free Go-
structures on the spinor bundle over S®, which is a trivial bundle in this case. The
3-dimensional sphere is endowed with the metric of constant sectional curvature k, which
we can assume to be equal to one up to rescalings. Further details can be found in [19]
and [49].

Remark 2.2.16. The construction that we describe on S? works on manifolds and orbifolds
with negative constant sectional curvature. However, in these cases, the metric is not

complete or smooth.

2.2.4.1 The spinor bundle over S3

Let S® be the 3-sphere endowed with the Riemannian metric of constant curvature 1.
Given an oriented orthonormal frame of S3, {ey, es, €3}, we can construct the dual oriented

orthonormal coframe, {b;, bs, b3}, and the relative Levi-Civita connection matrix:

0 —2p3 2pp
p=1 2p3 0 —=2p |,

—2p2 2,01 0
which is determined by the first structure equation: db = —p A b. In particular, we will
consider ey, e, e3 to be the left-invariant frame of S® = Sp(1) such that [e;, e;] = —2¢,
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and, hence, db; = 2b; A by, for (i, j, k) positive permutation of (1,2, 3). The metric and the

volume form in this frame become:
ggs = b3+ b3+ b2, volgs = by A by Abs,

while the Levi-Civita connection matrix is determined by: p; = —%bi.
Now, consider S® x R* as a trivial vector bundle over S3, and endow it with the
connection induced by the matrix:

0O, p2 p3

o= | P 0 —ps p2
—p2 p3s 0 —p
—p3 —p2 ;O
Remark 2.2.17. Equivalently, p is the spin connection on the spinor bundle $(S5?).

The vertical one forms with respect to this connection are:

§o = dag + ar1p1 + azps + azps, & = day — appr + azps — azps,
§2 = dag — azpy — appz + a1ps, &3 = dasz + azpr — aipe — agps,
where (ag, a1, as, az) are the coordinates on the fibers. Recall that the horizontal 1-forms

are spanned by {m¥%s(b;)}, where mgs : $(S%) — S? is the usual bundle projection. As an

abuse of notation, we will omit the pullback symbol.

2.2.4.2 The Gy-structure

Now that we recalled the geometry of the vertical and horizontal spaces, we are ready
to define the Bryant-Salamon construction of torsion-free Gs-structures on S x R*. Let
r? = ad + a} + a3 + a3, which corresponds to the square of the distance from the zero

section, and let

D =8N —LNEG, D= Na— 8N, W=ENE-GANE,
then, the Go-structures on $(S?) given by Bryant and Salamon are:
3
e = fPvolss +£g° ) bi A,
i=1
where f = v/3(c+r2)3 and g = 2(c+r2) /6. The induced metric, the relative coassociative
and volume forms become:

ge=fP9ss + PG +E+E+E),

3
sope =g NG NG NE — 297 ) b Ab A,

=1
vol. = f2g* volgs A&y A &1 A& A &s.
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As usual, (4,7, k) is a positive permutation of (1,2, 3).
Setting ¢ = 0 and M, := $(S?) \ S, we obtain a Gy cone (Mo, @), i.e. My with the

metric induced by the Go-structure ¢q is a Riemannian cone.

Theorem 2.2.18 (Bryant—Salamon [19]). Let (M., ¢.) be the spinor bundle of S* (or the
relative cone) endowed with the Bryant-Salamon Go structure p., ¢ > 0. Then, dp. = 0,
d *4, . =0 and Hol(M,, g.) = Go.

Moreover, SU(2)% 2 Sp(1)? acting on S* x R* = $3 x H C H? as follows:

(QD q2, q3) ’ (iL’, CL) = (q1$q_3, QZaq_3)a
for (q1,q2,q3) € SU(2)? and (z,a) € S® x H, is structure preserving.

Remark 2.2.19. The functions f and g defined above satisfy the following equations:

() =25 (@) =0, (Fig) =" (2.2.4

for k = 1 and where the dot represents the derivative with respect to 2.
In general, the Bryant-Salamon torsion-free Go-structures on the spinor bundle over

a 3-manifold of constant sectional curvature k are characterized by the forms:
3
o= f Aby Abs+ fg* ) b A (G A& — & N &),

i=1

3
xp = O NG NG NG — 27D b Ab A (G A& =& A&,
=1
with f, g satisfying Eq. (2.2.4).

2.2.5 The Foscolo—Haskins—Nordstrom manifolds

In this section, we provide a brief description of the Gy manifolds constructed by Foscolo,

Haskins and Nordstrém in [32], which we will refer to FHN manifolds for brevity.

2.2.5.1 The topology of the FHN manifolds

Let (M, ) be a non-compact, simply-connected G, manifold, with a structure-preserving
SU(2) x SU(2) cohomogeneity-one action. Then, it is well-known that A//SU(2) x SU(2)
is an open or half-closed interval I, and hence, the cohomogeneity-one structure can be
encoded by a pair of closed subgroups: Ky C K C SU(2) x SU(2), which are referred
to as the group diagram of M. In particular, SU(2) x SU(2)/K) is diffeomorphic to the
principal orbits of the SU(2) x SU(2)-action and corresponds to the interior of I, while
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SU(2) x SU(2)/K is diffeomorphic to the singular orbit and corresponds to the boundary
of I, if it exists.
In the case of our interest, we either have Ko = {lsy@)xsu@) } or Ko = Ky, N Ko o,

where m, n are coprime integers and K, , = U(1) X Zgcq(n,m) is defined by:
Kyn = {(eit‘h’ eifz) € T2 ; gilmbi+nba) _ 1} C SU(2) x SU(2),

where T? is the maximal torus in SU(2) x SU(2). If m,n are coprime the isomorphism
between K,,, C SU(2) x SU(2) and U(1) is:

(2.2.5)

moreover, Ky, , N Ky _9 = Zojmy|- Up to automorphisms of SU(2) x SU(2), the subgroup
K determining the singular orbit SU(2) x SU(2)/K is one of the following:

ASU(2), {lsug} xSU?2), Knn,

where A SU(2) denotes the SU(2) sitting diagonally in SU(2) x SU(2). Note that the
singular orbit is diffeomorphic to S? for the first two cases, and to S? x S3 for the third

one.

2.2.5.2 The Gy-structure

We now describe the Ga-structure on the principal part of M, diffeomorphic to (SU(2) x
SU(2))/ Ko x Int(I).
Consider on SU(2) x SU(2) the basis {by, by, bs, by, b, b3} of left-invariant 1-forms sat-
isfying:
db; = 2b; A by, db; = 2b; A by,
and denote by ey, es, €3, f1, f2, f3 the dual vector fields. On the principal part of M, these

can be explicitly described as follows:

61(p7Q7r) - —(pZ,0,0), 62(paQ7r) - _(p]7070)a 63(p7Q7r) = _(pk7070)a
fl(paQ7r) = _(07(]2’0)7 fQ(PaQJ") = _(O7q.77 O)a f3(p7qar) = _(ank70)7

where the product is by quaternionic multiplication. Let ¢;,co € R and let ay,as,as
be three functions only depending on the interval I. The following closed 3-form on
(SU(2) x SU(2))/ Ky x Int(I):

Y = —8C1b1 A bg A b3 — 802[31 N 52 VAN 53 + 4d(a1b1 N i)l + a2b2 A 52 + a3b3 A\ 63) (226)
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is a Gy-structure if and only if the following conditions are satisfied:

ai > O, A(CLI, a,Q,CLg) < O, 2@1@2&3 = \/ —A(al, as, CL3),

where

__ 4 4 4 2 2 2 2 2 2
A(ay, ag,a3) =aj + ay + a3 — 2aja; — 2a3a3 — 2a5a7 + 4(c1 — c2)aasaz+

+ 2ciep(al + a3 + a3) + cics.
Furthermore, if Ky = K,,,, N K2 _2, we require ay = ag unless there exists a d € Z such
that (d+1)m+ (d —1)n = 0.
Remark 2.2.20. Under these conditions, the interval [ is the arc-length parameter along
a geodesic meeting all the principal orbits orthogonally.

The torsion-free condition becomes the Hamiltonian system associated to the potential:

H(5U7y) = _A(ylvy%y?)) — 2y/T17973,

where y; = a; and z; = a;ay, for every (i, j, k) cyclic permutation of (1,2,3). If ¢ denotes

the parametrization of I, then, the dual form of ¢ is given by:

3
*Q 2162 djdkbj N l;j VAN bk VAN Bk+

=1

8
+ ——dt A ((2@1@2@3 — cl(af + CL% + CL% + CICQ))bl N b2 A b3

V—A
+ (2a1a2a3 + CQ(G/% + ag + CL% + 0102))51 VAN 52 VAN 63 (227)

3
+ Z ((ai(a? — a? — a2 + c163) — 2¢0a;a5)b; Abj A by
i=1
+ (a;(a? — a,? —a; +cie) + ZClajak)l;i Abj N bk)>
Enhanced symmetry. We now restrict our discussion to the case where a := as = as
and b := a;. Under this additional condition, the symmetry of (SU(2)xSU(2))/KoxInt(I)
becomes SU(2) x SU(2) x U(1), where the action of (71,72, A) € SU(2) x SU(2) x U(1) on
([p,q],t) € (SU(2) x SU(2))/ Ky x Int(]) is as follows:

(71,72, A) - ([P, @l t) = ([P, 7207, 1), (2:2.8)

where A is given by the U(1) C SU(2) generated by quaternionic multiplication by i.
Under this enhanced symmetry, the form of A(a,b) simplifies to:

—A(a,b) = 4a*(b—c1)(b+ c3) — (b* + c1¢2)?,
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and the same holds for the Hamiltonian system, which becomes:

iy = __Nalynge) Gy = __Molynge)
4y/=A(yr, ) 2v/~A(y1, y2)
T1To . x%

n = \/%7 Y2 = \/3,%’

where y; = a,yp = b,z1 = ab, x5 = a2 and A,, Ay denote the derivative of A(a,b) with
respect to the first or the second component, respectively.

Remark 2.2.21. From —A(a,b) > 0, we deduce that a,b— ¢;, b+ co have definite sign, and

hence, 2, has definite sign as well.

Example 2.2.22. The Bryant-Salamon manifolds described in Section 2.2.4 can be seen

as special examples of FHN manifolds such that, for some ¢ > 0:

3 3
a1 = Qg9 = a3 = g?ﬂ, C1 = —g\/gC, Co = 0, K = {ISU(Z)} X SU(2) (229)

or
1 1
a; = Ay = az = 67“3 - 503’ o =—-c=c, K=ASU?2),

where 7(t) is a reparametrization of ¢ such that dr/dt = 1/2(c + r2)'/6 in the first case

and dr/dt = 1/\/3\/1 — 8&c3r—3 in the second case.
Example 2.2.23. The G, manifolds predicted by Brandhuber-Gomis-Gubser—Gukov

in [16] (rigourously constructed by Bogoyavlenskaya in [14]) can also be seen as special

examples of FHN manifolds.

2.2.5.3 Extension to the singular orbit and forward completeness

Now, we state under which conditions the G-structure extends smoothly to the singular
orbit and when it is forward complete.

First, we know from the slice theorem that a neighbourhood of the singular orbit
SU(2) x SU(2)/K is equivariantly diffeomorphic to a small disk bundle of:

(SU(2) x SU(2)) xx V,

for some vector space V endowed with a representation of K. We now summarise when
the Go-structure defined in Eq. (2.2.6) extends smoothly to the zero section of such a
bundle (cfr. [32, Proposition 4.1]).

Case 1 (K = ASU(2)). In this case, V = C? and SU(2) acts in the usual way
on it. The SU(2) x SU(2)-invariant Go-structure defined above extends smoothly to the

zero-section if and only if:
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1. Cl+02:0,

2. the functions {a;} are even and have the following development near 0: a;(t) =
¢ + sat? + O(t*) for some a € R,

3. 8% =¢; > 0.

Case 2 (K = {1sy(e)} x SU(2)). As in the previous case, V = C* and SU(2) acts in the
usual way on it. The Go-structure defined above extends smoothly to the zero-section if

and only if:
1. Co = 0,

2. the functions {a;} are even and have the following development near 0: a;(t) =
1a;t? + O(t*) for some o; € RT,

3. 8ajasas = —cg > 0.

Case 3 (K = K,,,,). In this situation, V' = R? and K,,,, = U(1) acts on it with
weight 2|m + n|. The Go-structure defined above extends smoothly to the zero-section if

and only if:
1. mn >0,
2. ¢; = —m*r3 and ¢y = n*r for some ro € R\ {0},
3. the function a, is even and satisfies: a;(0) = mnrg, i;(0) > 0,
4. the function as + ag is odd and satisfies: a2(0) + a3(0) > 0,

5. we either have ay = a3 or m = n = =£1; if the ay and a3 do not coincide, then, their

difference is an even function with |az(0) — az(0)| < 2|ro|>.

The forward completeness of the local solutions constructed above is discussed in [32,
Section 6, Section 7| for the case we have the enhanced symmetry SU(2) x SU(2) x U(1).
Moreover, they showed that the complete Gy manifolds they obtain are all the possible
complete Go-manifolds with SU(2) x SU(2) x U(1)-symmetry.

2.3 Holonomy Spin(7)

In this section, we recall some basic results concerning Spin(7) manifolds and Cayley

submanifolds.
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2.3.1 Spin(7) manifolds

The local model is R® 2 R* @ R* with coordinates (o, ..., 3, ag, ..., a3), and Cayley form:

3

q)o = dIO /\d!El /\dl’g VAN dl’3 +da0 /\da1 /\dag /\da3 + Zwi /\’Ih,

i=1
where w; = dxg A dx; — dxj A dxy, n; = dag A da; — da; A day, and (4, , k) is a cyclic
permutation of (1,2,3). Note that {w;}3_; and {n;}?_, are the standard basis of the

anti-self-dual 2-forms on the two copies of R*.

It is well-known that Spin(7) is isomorphic to the stabilizer of &, in GL(8,R). Hence,

we can see (R®, @) as the linear model for manifolds with Spin(7)-structure group.

Definition 2.3.1. Let M be a manifold and let ® be a 4-form on M. We say that & is
a Spin(7)-structure on M if at each point x € M there exists an oriented isomorphism
py : R® — T, M which identifies ®; with ®

oo Le, pp® = .

The Spin(7)-structure on M also induces a Riemannian metric, gg, and an orientation,
volg, on M. With respect to these structures @ is self-dual. We remand the reader to [66]

for further details.

Definition 2.3.2. Let M be a manifold and let ® be a Spin(7)-structure on M. We say
that (M, ®) is a Spin(7) manifold if the Spin(7)-structure is torsion-free, i.e., d® = 0.

Similarly to the Go case, Bryant [18| showed that & is closed if and only if ® is parallel.
Hence, by Proposition 1.1.4, (M, ge) is a Spin(7) manifold if and only if Hol(gs) C Spin(7).

Proposition 2.3.3 (Alekseevsky [4]). Every Spin(7) manifold is Ricci-flat.

The octonionic nature of the tangent space equips the tangent bundle with a natural

triple cross product.

Definition 2.3.4. Let (M, ®) be a manifold with a Spin(7)-structure. The triple cross

product on the tangent bundle is defined as the musical dual of the following map:
BTM xTM xTM —T"M
(U, VW) = iy oiy oiy o d.
Explicitely, this is given by:
UxV xW=B(UV,W)7*
or, equivalently by
B, V, W, Z) = go(U x V x W, Z),

where # denotes the Riemannian musical isomorphism and U, V, W, Z are vector fields of
M.
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2.3.2 Cayley submanifolds

Given a manifold with a Spin(7)-structure, (M, ®), it is clear that ® have co-mass equal
to one. It follows that, if (M, ®) is a Spin(7) manifold, then, ® is a calibration.

Definition 2.3.5. Let F' C (R® ®;) be a 4-dimensional vector subspace. F is a Cayley
‘F = volp. A submanifold L of a Spin(7) manifold (M, ®) is Cayley if it is
calibrated by @, i.e. <I>|L = voly,.

plane if &

Remark 2.3.6. Obviously, L is Cayley if and only if 7, L is a Cayley plane of (R®, ®;) for

every x € L under the isomorphism p,.

We now state some well-known properties of Cayley planes.

Proposition 2.3.7 (Harvey-Lawson [37]). Let ' C (R®, @) be a 4-dimensional subspace.

Then, the following are equivalent:
1. F is a Cayley plane,
2. Ft is a Cayley plane,
3. ifu,v,w € F, then, u x v X w € F,
4. ifu,v € F and w € F*, then, u x v x w € F*,
5. ifu,v,w € FL, then, u x v x w € F+,
6. ifu,v,w € F and z € F*, then, i, 01y 01, 0i,®y = 0.

Moreover, it follows that for every u,v, w linearly independent vectors of R® there exists

a unique Cayley plane containing them.

It is clear that we can translate this statement to the tangent space (T, M ,<I>|m) of
a Spin(7) manifold through p,. In particular, one can also obtain the following local

existence and uniqueness theorem.

Theorem 2.3.8 (Local existence and uniqueness; Harvey—Lawson [37]). Let N be a 3-
dimensional real analytic submanifold of a Spin(7) manifold (M, ®). Then, there exists a

unique Cayley real-analytic submanifold ¥ such that N C X.

We now give Karigiannis and Min-Oo characterization of the Cayley condition.
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Proposition 2.3.9 (Karigiannis—-Min-Oo [50, Proposition 2.5]). The subspace spanned by
tangent vectors u,v,w,y is a Cayley 4-plane, up to orientation, if and only if the following

form vanishes:
n=m (v AB(v,w,y) +v" AB(w,u,y) +w” AB(u,v,y) +1" AB(v,u,w)),

where .
T (u” Av) = 1 (ub/\vl’+iuoz'vo<1>).

Remark 2.3.10. The reduction of the structure group of M to Spin(7) induces an orthog-
onal decomposition of the space of differential k-forms for every k, which corresponds to
an irreducible representation of Spin(7). In particular, if & = 2, the irreducible represen-
tations of Spin(7) are of dimension 7 and 21. At each point # € M, these representations
induce the decomposition of A?(TM) into two subspaces, which we denote by A2 and
A2, respectively. The map 77 defined in Proposition 2.3.9 is precisely the projection map

from the space of two-forms to A2. Further details can be found in [66].

2.3.3 The Bryant—Salamon Spin(7)-manifold

In this section we will describe the Spin(7) manifolds constructed by Bryant and Salamon
in [19]. There, they described a 1-parameter family of torsion-free Spin(7)-structures on
M := $ (S%), the negative spinor bundle on S*. The 4-dimensional sphere is endowed
with the metric of constant sectional curvature k, which is the unique spin self-dual
Einstein 4-manifold with positive scalar curvature [40]. Without loss of generality, we can

rescale the sphere so that £ = 1.

Remark 2.3.11. The Bryant-Salamon construction on S* also works on spin 4-manifolds
with self-dual Einstein metric, but negative scalar curvature, and on spin orbifolds with

self-dual Einstein metric. However, in these cases, the metric is not complete or smooth.

2.3.3.1 The negative spinor bundle of S*

Let S* be the 4-sphere endowed with the Riemannian metric of constant sectional cur-
vature 1. As S* is clearly spin, given Pso(sy frame bundle of S4 we can find the spin

structure Pspin(4) together with the spin representation:
p = (pg, p—) : Sp(1) x Sp(1) = Spin(4) — GL(H) x GL(H),

where pi4(p+)(v) := vps. Let T : Pspina) — Psos) be the double cover in the definition of

spin structure, and let 7 : Spin(n) — SO(n) be the double (universal) covering map for
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all n > 3. The negative spinor bundle over S* is defined as the associated bundle:
$_(S) = Pspin(ay X H.

The positive spinor bundle is defined analogously, taking . instead.

Given an oriented local orthonormal frame for S*, {eg, e, e, €3}, the real volume
element ej - e; - e5 - e3 acts as the identity on the negative spinors and as minus the identity
on the positive ones. Now, let {bg, b1, ba, b3} be the dual coframe of {e, €1, €2, e3}, let @ the
connection 1-forms relative to the Levi-Civita connection of S* with respect to the frame
{eo, €1,€2,e3} and let {o1,0;,0;, 04} a local orthonormal frame for the negative spinor
bundle corresponding to the standard basis of {1,4, j, k} in this trivialization. Hence, we
can define the linear coordinates (ag, a1, as, az) which parametrize a point in the fibre as
ap01 + a10; + a20; + a3o0y.

By the properties of the spin connection and the fact we are working on the negative

spinor bundle, we can write:

Voo = (pip-(e2 - €3) + pap—(e3 - 1) + pap—(e1 - €2)) o
= (p1p—(@) + pap—(3) + psp—(k)) o,

where 2p; = @3 —@f, 2py = —@f —@} and 2p3 = Wi —&3. Tt is well-known that these are the
connection forms on the bundle of anti-self-dual 2-forms, with respect to the connection
induced by the Levi-Civita connection on S* and the frame given by €; := by Ab; — b; A\ by.
As usual, (i, 7, k) is a cyclic permutation of (1,2,3). The p;s are characterized by:

0 0 —2p3 2p 0
d QQ = — 2p3 0 —2p1 VAN QQ s (231)
Q3 —2p2  2p; 0 Q3

and the vertical one forms are:

& = day + pray + paas + psag, &1 = day — prag — psas + paas, (2.3.2)

§o = day — paag + p3a; — pras, §3 = daz — psag — paay + pras.
Recall that the horizontal 1-forms are spanned by {75 (b;)}i_;, where 7ga is the usual

bundle projection. As above we will omit the pull-back as an abuse of notation.

Remark 2.3.12. A detailed account of spin geometry can be found in [54]. Observe that,
there, the definition of positive and negative spinors is interchanged. We opted to stay
consistent with [19]. Indeed, the vertical 1-forms we obtain coincide with the ones obtained

by Bryant and Salamon, up to renaming the p;s.
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2.3.3.2 The Spin(7)-structures

If 2 := a2 + a} + a3 + a3 is the square of the distance function from the zero section and

¢ is a positive constant, then, the Spin(7)-structures defined by Bryant and Salamon are:

D, :=16(c + %)V N EL N Ey N Eg + 25(c 4+ 12)55bg A by A by A bs

(2.3.3)
+ 20(0 + T2)1/5<A1 A Ql + Ag A\ QQ + Ag A Qg),
where A; :=&§ N & — & N & As usual, (7, 7, k) is a cyclic permutation of (1,2, 3).
The metric induced by ®. is
ge = Ac+ 1) 2+ & + &+ &) + 5(c + 1) (b5 + b + b3 + b3), (2.3.4)
while the induced volume element is
VOIC = (20)2 (C + 7’2)2/5(60 N 51 VAN {2 VAN 63 N b(] N bl VAN b2 A bg) (235)

Setting ¢ = 0 and My := $_(S%) \ $* @ R* x S7, we obtain a Spin(7) cone (M, ®y),

i.e. My with the metric induced by the Spin(7)-structure @, is a Riemannian cone.

Theorem 2.3.13 (Bryant-Salamon [19]). Let (M., ®.) be the spinor bundle of S* (or
the relative cone) endowed with the Bryant-Salamon Spin(7)-structure ®., ¢ > 0. Then,
d®. = 0 and Hol(M,, g.) = Spin(7).

Remark 2.3.14. If we define f(r?) := 5(c +r?)%° and g(r?) := 4(c + r?)72/%, then, these

functions satisfy the following equations:

(fo) =50 (=" 1g (2.3

where the dot denotes the derivative with respect to r2.
In general, the Bryant—Salamon torsion-free Spin(7)-structures on the negative spinor
bundle over a self-dual Einstein 4 manifold of scalar curvature k are characterized by the

Cayley 4-form:

3
@ 1:9250/\51/\52/\§3+f2b0/\b1/\bz/\bg+ngAi/\Qi,

i=1

with f, g satisfying Eq. (2.3.6).
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2.3.3.3 Automorphism Group

In the setting we are considering, Bryant and Salamon noticed that the diffeomorphisms
given by the Sp(2) x Sp(1)-action described as follows are actually the automorphism
group [19, Theorem 2|. Consider SO(5) acting on S* in the standard way. This induces an
action on the frame bundle of S* via the differential, which easily lifts to a Spin(5) & Sp(2)
action on Pspins). If we combine it with the standard quaternionic left-multiplication by
unit vectors on H, we have defined an Sp(2) x Sp(1) action on Pspins) X H. As it commutes
with p_, it passes to the quotient $_(S5).

By Lie group theory [51, Appendix B, we know that the 3-dimensional connected
closed subgroups of Sp(2) are the lift of one of the following subgroups of SO(5):

SO(3) x Ids, Sp(1) x Idy,
SO(3) acting irreducibly on R,

where Sp(1) x Id; denotes both the subgroup acting on H x R by left multiplication and by
right multiplication of the quaternionic conjugate. Observe that they are all diffeomorphic
to SU(2). In particular, the family of 3-dimensional subgroups that do not sit diagonally
in Sp(2) x Sp(1) consists of

G x 1Sp(1) C Sp(2) X Sp(l)

and
Lsp(z) % Sp(1) C Sp(2) x Sp(1),

where G is one of the lifts above. These are going to be the subgroups of the automorphism

group that we will take into consideration in Chapter 4.

2.4 Multi-moment maps

In [62] and [63], Madsen and Swann extended the classical notion of moment maps for
symplectic manifolds to any closed geometry (M, «), i.e. a manifold X endowed with a
closed form a. In order to recall the precise definition, we need to briefly discuss some
properties of multi-vectors.

2.4.1 Cartan’s extended formula

In this subsection we recall the basic definitions and properties of multi-vectors.
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Definition 2.4.1. A multi-vector of degree k is a section of I'(A¥T'M). A multi-vector
of degree k, ¢, is simple if it has the form:

q:Xl/\/\Xk7
for X; € F(TM)

There is a natural extension of the interior product on differential forms which can be

defined on simple multi-vectors and extended R-linearly to the whole space:

i: T(A*TM) x T(A"T*M) — T(A""HT* M)

(Xl/\.../\Xk,Oé)l—>iXkO...OiX10é

Note that there is another important space describing k-tuples of tangent vectors:

AE(T(TM)). Tt is important to observe that AX(I(T'M)) # T(A*TM). Indeed, the

former is much bigger than the latter, which is equal to A'gw( any(T(TM)). However,

there is a natural R-linear projection A%(I'(T'M)) — T'(A*T'M) which can be defined on

decomposable elements by:
Xl)\Ain—)Xl/\/\Xk,

where A denotes the R-wedge product. If Q = X; A ... A X € AE(T(TM)) is decompos-

able, then, we can define:

Qz:(_1)1X1AAX1—1AX1+1AX]€7

We also define the following useful operators which extend to the whole A% (T(TM)) by
R-linearity:

S
EQa = Z Z'Qiﬁxia,

=1

L(Q) = > [Xi, X;] A Qi

i’j
where « is a given differential form.

Lemma 2.4.2 (Extended Cartan’s formula; Madsen—-Swann [63]). Let o« € T'(A"T*M)
and let p € T(AKTM). Then, for every P € AE(T(TM)) projecting to p we have:

ipda — (—1)*d(i,0) = Lpa — igpya.
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2.4.2 Multi-moment maps

Let G C Aut(M, ) and let g be the Lie algebra of GG, which we identify in the usual way
with the vector fields generated by G, i.e., g C I'(T'M). Under this identification, we have
Akg c AE(T(T*M)). Moreover, since the map sending an element of g to a vector field is
R-linear, for every element of A¥g, we can associate a unique multi-vector. In other words,
there is a natural inclusion of Afg in AX(T'(T*M)), and the projection to I'(A*T'M), when
restricted to A¥g, is injective.

Observe that in this setting, the Extended Cartan’s formula becomes:
(=Dfd(ipa) = iz,
for every p € AFg. This equation motivates the following definition.

Definition 2.4.3 (Madsen—Swann [63]). Let g be a Lie algebra. The k' Lie kernel of g
1s:

Pyr = ker(L : A*g — AF~1g).
Example 2.4.4. Here are some examples of k%" Lie kernels.

1. If G is abelian, P, = A*g for every k,
2. For any Lie group Py = g,

3. Pau(z)3 = A’su(2),

4. Pexeuz)s = Nsu(2) & (A% ® Alsu(2)),

5. Pt2><5u(2),2 - A2t2 EB (A1t2 ® A15u<2)).
Remark 2.4.5. If (M,«) is a closed geometry of degree r, then i, is a closed form for
every p € Py,—1. Moreover, if H'(M) = {0}, then there exists a function v, such that
dv, = iyo.
Definition 2.4.6 (Madsen-Swann [63]). Let (M, ) be a closed geometry of degree k, and
let G C Aut(M,«). A multi-moment map with respect to this action is an equivariant
map v : M — Py, such that:

d(v,p) = iy,

for every p € Py 1.
Remark 2.4.7. For instance, the existence of multi-moment maps is granted if H'(M) =
{0} and G is compact. This is always going to be our case for the rest of this thesis.

Multi-moment maps were particularly successful in the toric setting, where the k" Lie
kernel is trivial. Indeed, multi-moment maps were used to study toric Go manifolds [64],

toric Spin(7) manifolds [65] and nearly—Ké&hler toric manifolds [26].
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Chapter 3

Calibrated fibrations and linear
calibrated vector bundles

In this chapter, we consider manifolds with exceptional holonomy that are fibred, in a
suitable sense, by coassociative or Cayley submanifolds.

As a first step, we will give a general definition of locally trivial calibrated fibrations
in a Riemannian manifold (M, g) endowed with a calibration a. These objects are fibre
bundles whose fibres are calibrated submanifolds. The Riemannian structure, g, induces
an Ehresmann connection on the bundle. This splitting extends to the algebra of differ-
ential forms and, hence, to the condition da = 0. The process was reversed in the cases
of our interest by Donaldson in [27] (cfr. Proposition 3.1.2 and Proposition 3.1.3).

The definition of calibrated fibration that we will use in Chapter 4 and Chapter 5 is
adapted, to a general setting, from the definition of coassociative fibrations introduced by
Karigiannis and Lotay in [49]. Such a definition coincides with the locally trivial one in
a open dense set, and allows the fibres to be singular and/or intersect in the complement
of this open dense set.

Afterwards, we turn our attention to a special class of coassociative and Cayley fi-
brations, which we call linear coassociative fibrations and linear Cayley fibrations. These
objects are locally trivial calibrated fibrations on a Euclidean vector bundle, endowed with
a compatible linear connection and Gg or Spin(7) structure. Under an isotropic condition,
we are able to explicitely solve the systems of PDEs corresponding to the torsion-free con-
dition. All the solutions turned out to be deformations of the Bryant—Salamon manifolds
described in Section 2.2.4 and Section 2.3.3.
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3.1 Calibrated fibrations in manifolds of exceptional
holonomy

3.1.1 Definitions of calibrated fibrations

The obvious way to define a calibrated fibration is as follows.

Definition 3.1.1. Let (M, g) be an n-dimensional manifold with a k-dimensional cal-
ibration o, £k < n. M admits a locally trivial a-calibrated fibration if there exists a
(n — k)-dimensional manifold B and a smooth fibre bundle structure = : M — B such
that 7—1(b) is an a-calibrated submanifold of M for every b € B.

Given a locally trivial calibrated fibration 7 : M — B, we can use the Riemannian
metric g to define an Ehresmann connection H on M. This means that we have a splitting
of TM = H @&V, where V is the tangent bundle along the fibres. Moreover, the splitting

propagates to the space of k-forms:
rAfT*M) = @ 1
p,q>0,p+q=k
Under this decomposition, the exterior differential splits into d = dr + dy + Fp, where:
dp : TP — PatL
dH : vaq — Fp+17q,

Fy : TP — TPH2a-1,

The condition that the fibres of the bundle are a-calibrated and da = 0, gives a system

of PDEs. In the case of our interest we can reverse this procedure as follows.

Proposition 3.1.2 (Donaldson [27]). Let w : M — B be a fibre bundle with 7-dimensional
total space M and 3-dimensional base space B. A Go-structure on M with coassociative

fibres diffeomorphic to F, is equivalent to the following data:
e a connection H, identified with its horizontal distribution,

o an w € M2 such that, at each point, w can be viewed as an injection of H to a

maximal negative subspace for the wedge product,

o a tensor A € GO such that the value of \ is positive at each point, regarded as an
element of T(A3T*B).
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Explicitly, the induced Gy-structure is ¢ = X\ 4+ w, and the torsion-free condition becomes
the following system of PDEs:

( de =0
de = 0,
dF)\ = —FHUJ,
Y dun = 0. (3.1.1)
dp© = —Fpp,
| dy© =0,

where p and © are determined algebraically from w and \ (cfr. [27, Lemma 3]).

Proposition 3.1.3 (Donaldson [27]). Let # : M — B be a fibre bundle, with M 8-
dimensional and B 4-dimensional. A Spin(7)-structure on M with Cayley fibres diffeo-

morphic to F, is equivalent to the following data:
e a connection H, identified with its horizontal distribution,

o a tensor A € 0 such that the value of \ is positive at each point, regarded as an

element of T(A'T*B),

o a tensor jp € TOY such that the value of pu is positive at each point, regarded as an

element of T(A‘T*F),

e atensorv € I'®? such that at each point v can be viewed as an isomorphism between
anti-self-dual two forms of H and V.

Ezxplicitly, the induced Spin(7)-structure is ® = X\ + p + v, and the torsion-free condition
becomes the following system of PDFEs:

dp)\ + FHV = 0,

dH/L = 0,

oy — 0. (3.1.2)
dFV + FH/L =0.

These propositions are a consequence of the local model for G, and Spin(7) manifolds
and from splitting the torsion-free condition (dy = d * ¢ = 0 and d® = 0, respectively)
with respect to the connection H.

In Chapters 4 and 5, we will need a different definition for calibrated fibration, which
allows singular and intersecting fibres. The reason behind this looser definition comes
from physics, where it is important to let the fibres to be singular, and from the following

proposition:
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Proposition 3.1.4 (Baraglia [8]). There are no locally trivial coassociative fibrations on

compact manifolds with full holonomy Gs.
The definition of calibrated fibration that we will make use of is:

Definition 3.1.5. Let (M, g) be an n-dimensional manifold with a k-dimensional calibra-
tion a, k < n. M admits a a-calibrated fibration if there exists a family of a-calibrated
submanifolds N, (possibly singular) parametrized by a (n — k)-dimensional space B sat-

isfying the following properties:
e M is covered by the family {Ny}es;
e there exists an open dense set B° C B such that NN, is smooth for all b € B°;

e there exists an open dense set M’ C M, a submanifold B’ C B and a smooth fibre
bundle 7 : M" — B’ with fibre N, for all b € B'.

Remark 3.1.6. The last point allows the a-calibrated submanifolds in the family B to
intersect. Indeed, this may happen in M \ M’. Moreover, we may lose information (e.g.

completeness and topology) when we restrict the fibres to M.

Remark 3.1.7. It is clear that a locally trivial calibrated fibration is, in particular, a
calibrated fibration with B° = B and M’ = M.

3.2 Linear coassociative fibrations

In this section, we study a special case of coassociative fibrations. Namely, locally trivial

coassociative fibrations with a compatible vector bundle and Ga-structure.

Definition 3.2.1. Let (M, ¢) be a Gy manifold and let B a 3-dimensional manifold. A
locally trivial coassociative fibration 7 : M — B is a linear coassociative fibration if the

following conditions are satisfied:
e 71 : M — B has the structure of a Euclidean vector bundle,

e the induced connection H is linear, i.e. it is induced by a covariant derivative V,

and it is compatible with the Euclidean structure,
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e at every point of B there exists a local coframe {by, bo, b3} of B and a local orthonor-
mal trivialization of the bundle {oq, 01, 02, 03} such that the Gy-structure on M and

relative Hodge dual are respectively given by:

3
© :=f123b1 A by A b3 + Z fibi A (goiéo N & — gk N Ek),

=1
3

*© =go123§0 N E1 NEa N &3 — Z firbj Nk A (goio N & — gk N k),
i=1
where f;, g; are smooth positive functions on M, (i, j, k) is a positive permutation of
(1,2,3) and {&, &1, &2, &3} is the dual of the basis induced by the ;s on the vertical

space.

Example 3.2.2. The local model R” = R? @ R*, as described in Section 2.2.1, is a
linear coassociative fibration. In this case, the connection is trivial. A nontrivial example
consists of the Bryant—Salamon manifold of topology $(S?). The linear connection is

simply the spin connection in this setting.

3.2.1 The system of PDEs for linear coassociative fibrations

We now want to write explicitly the local system of PDEs for the torsion-free condition
in the linear coassociative fibrations case. To this end, let {ej, es, €3} be a the dual frame
of the coframe {by, bo, b3} given in Definition 3.2.1. The coframe induces a metric on B,
gB = Z?:1 b?, and the relative Levi-Civita connection induces the connection matrix

{w]} € s0(n), which satisfies the structure equations:

db=—w A b,

R=dw+wAw,

where R € so(n) denotes the curvature 2-form.

Let {0g,01,02,03} be a local orthonormal trivialization of the Euclidean bundle as
in Definition 3.2.1, inducing the parametrization of the fibres: agog + ... + azo3. Since
the connection, H, is compatible with the Euclidean structure, we get the associated
connection matrix of 1-forms {A’} C so(n) and the curvature matrix of 2-forms {F/} C

s50(n). These matrices of differential forms are related by the structural equation:

F=dA+ANA.
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It is well-known that the dual of the horizontal and the vertical spaces are spanned,

respectively, by:
3
bz‘ = W*(bi), fl = dal + Z Aﬁnam,

fort=1,..,3and [ =0,...,3.

Remark 3.2.3. From now on, as an abuse of notation, we will omit the pullback symbol
from our discussion. Moreover, products of functions denoted by the same letter, but
with different subscripts, will just be written with repeated subscripts, e.g., if fi, fo, f3
are smooth functions, then, f; - fo = fi2 and f - fo - f3 = fi23.

From a straightforward computation, we can write the system of PDEs explicitly.

Proposition 3.2.4. Let 7 : M — B be a linear coassociative fibration. The torsion-free

condition becomes, in a local trivialization as in Definition 3.2.1, the following system of
PDEs:

23 (Zl =0 al(leOz)&l N N&i — &ll(figjk)ﬁl N éj A ék)
Z (Zl: el(fzgm)bl ANbi N NE — el(figjk)bl Ab; A fj A &g
Zimzo Doy (figoi)am AL, N b AN Eo N & — Doy (figin)amAL, N b N E; A &k
+ 300 figoi(—wi Ay A& NE) = figin(—wi Abi A& A &)
— 00 figoibi A (& N A N& — & N& N AY)
- Z?:o —figikbi N(GNA] NE— & NEN Af))
0= Z?:o 0ay (f123)& A by Aby A by
— i figobi A (FONE — Fing) — fzg]kb AN(FINE— FENE;)
¢ 0= (Z? 1 61(90123)bl sz 0 Oy (Go123)am Al L) A& A& A& A £ ,
0= X o Ou (F3003)61 N bj A b N 6o A& = oy ([jx98)6 A by A b NG A i
—goule o— )F’A&)A ANGN NG
0= ZZ 1 Zl 1 €l(fjkgo )bl N b]' N bk A 60 A\ fz — el(fjkgjk)bl A bj A\ bk A\ gj A\ fk
+ Zz 0 O (fir0s) am ALy A by Al A€o NE;
Zlm 0 az(fjkgyk)amA Nbj Nbg N & A&
= (W] Ab A b = by AwF AB) A (goiéo A &n — giés A &)
+ 3000 figoibi A b A (G ANADNE — & NG N AY)
( — S o firginbi bk A (G A AT NG — & NG A AF)

(3.2.1)

where F. := S Fla

mOm

Example 3.2.5. We now give a local example of a linear coassociative fibration. Let B be
a 3-manifold of constant sectional curvature & with local orthonormal coframe {by, ba, b3}.

Let E be a Euclidean vector 4-bundle with local orthonormal sections, {og, 01, 09,03},

39



and let A be the relative metric compatible connection:

0 —Q —Q9 —Q3
A — (03] 0 —Q3 — 2,03 Qo + 2p2
(6%)) a3+ 2[)3 0 —Q — 2p1 ’
a3 —Qo —2p2 a1+ 2p 0,
where p; = %wf and the «; are such that A is compatible with the curvature matrix:
0 ba ANbs b3 A by b1 A by
F:_E —by N b3 0 —bi ANby b3 Aby
2|1 =bs Ab; by Aby 0 —by A\ b
—by Aby —bs Aby by Abs 0

ie. F=dA+ANA Tf{&, &, 6, &) are the vertical 1-forms dual to the basis induced by

the o;s on the vertical space, then, it is straightforward to check that the Go-structure:

3
@ngbl/\bz/\b3+fgzzbi/\(§o/\fi—fj/\fk)
=1

is torsion-free when f, g are functions only depending on the square of the distance from

the zero section, 72, and satisfying the ODEs in r?:
: . 3k k :
(fg?) =0, (f*)=—F1g" ¢'7= (9

We call such examples deformed G, Bryant—Salamon manifolds. Indeed, if we pick a; =
—p;, then, E becomes the spinor bundle over B and we recover the Bryant—Salamon
manifolds of topology $(5?) (cfr. Remark 2.2.19).

A similar idea was employed by Herfray—Krasnov—Scarinaci-Shtanov in [38| for the

Bryant—Salamon manifolds of topology A% (X).

3.2.2 Isotropic linear coassociative fibrations

Even though Eq. (3.2.1) is a complicated system of PDEs, under some isotropic condition

we are able to find all the solutions of the system.

Theorem 3.2.6. Let (M, ) be a linear coassociative fibration such that the horizontal
and vertical spaces are isotropic, i.e., for every p € M and unit v,w € H, C T,M (or
V, C T,M) there exists a local isomorphism F of (M, p) such that dF,(v) = w. Then,
(M, ) is locally isomorphic to a deformed Go Bryant-Salamon manifold.

Proof. Under the isotropic condition, we have f := f; for all © = 1,2,3 and g := ¢; for all
[ =0,1,2,3. Hence, the system of Eq. (3.2.1) becomes:
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0 (f9) S0 (Cloli NEoNE — G NE NG
SO (Z?:l el(fg@) b Nbi A (Eo N& — & N &)
=m0 O (fGP)am AL, Abi A (& A& — & N &)
— S fPWIADA (CoNE — & N |
SO fPO A ENADNE — EgNENA—ENA] NE+E NG N AD))
0="3"0 0 0u ()& Aby Aby Abs
30 fgPb N (FONE — FinE — FI A&+ FENE)
0= (20 elg)h = 07 1o O (g amAL) Ao N A& A s
0=320 1 D0 Bu(f297)& A b Nbi A (0 A& — & A &)
—g" S (CDPEEA GG A NG A A Gy
0=>"0 (O el f2g)b + 32 1 Oa (208 amAL) Abj Abi A (€0 A& — &5 A &)
— S0 PPl AD ALy — by AwE A A (Eo ANE— & N E)
+ 3500 F29%0 Ab A (G AN AV NE — Eg AN E N AD)

(0
0

A\

\ — S0 L2 Ao A (G N AT NG — & NG A AF)
(3.2.2)
We begin our analysis from the fifth equation, which becomes, after regrouping;:
3
—g'FY = 0a,(f29%)bj Ay, (3.2.3)
i=1
— g Fr = 00, (f9%)bi A b — 0, (297)bi A b — Oag(f297)bj A by, (3.2.4)

where, as usual, (4, j, k) is any cyclic permutation of (1,2,3). As {F}} € s0(4), we can see
that:

3
0=g'Fe == Ei(f*¢")bj Aby,
i=1
where the E;s are the generators of sp(1):

By = 0104, — 004y — a304, + 204,
Eg = a28a0 + a38a1 — a08a2 — a18a3,
E3 = Cl38a0 - agaal + a18a2 — a08a3.

As a consequence of this, we deduce that f2¢* only depends on r? = a2 + a? + a3 + a3
when restricted to a fibre, and hence, 9, (f2¢%) = 2a;(f?¢?), where the dot denotes the
derivative with respect to 7?. Another way to rewrite Eq. (3.2.3) and Eq. (3.2.4) in terms
of the E;s is:

—g*FP = 2r2(f262)b; A by, (3.2.5)
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which holds for every i = 1,2,3. Observe that Eq. (3.2.5) implies that FQEQ},’ = F;j;ﬁ = F;};
Now, since one can easily verify from the antisymmetry of F' that F;(F jlk) = 0, we deduce
that F £k depends only on 72, when restricted to any fibre. Therefore, Eq. (3.2.5) implies
that g, and consequently f, has the same property. Finally, we deduce that the curvature

form is:
0 ba A b3 bs N\ by by A by
AR B CRAY 0 —biAby b3sAb
T 2| =bsAb by AD 0 —by A by
—by Aby —bs Aby by Abs 0

where k := —2F0,; = —2F5,, = —2FY,,. The functions, f, g and k satisfy:

k .
g'7 = (fe?). (3.2.6)
We now turn our attention to the other equations. The first and the third ones read,
respectively:
(fg*) =0, (3.2.7)
: 3k
(f%) = fd" (3.2.8)

The fourth one implies that g is independent from the basis B. Indeed, A being a metric
connection implies » 7, (gHaam AL = 0.

Before studying the remaining two equations of Eq. (3.2.2), we make the following
assumption, which we will prove later.

Claim: Up to changing the metric ¢gp, f can be assumed to be independent from the
basis B.

The claim, together with Eq. (3.2.6), implies that k is a constant. Moreover, since

ei(f) =0 for every i = 1,2, 3, we deduce that the two remaining equations become:

0=— (] +AF — A Abp Ab; 4 (W + A) — AL) Ab; ADj,
0=—2(w! + Ak — A A b+ (wh + A) — AL) Ay,

for every (i, 7, k) cyclic permutation of (1,2,3). Therefore, one can verify that:
w! 4+ A — AT =0. (3.2.9)

Combing the structure equations for the curvature forms, R,F, with Eq. (3.2.9), we
obtain:
i i k
Rj:FO—F} :kbz/\bj
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Hence, (B, gp) has constant sectional curvature k and we conclude.

Proof of the claim: The second (or, analogously, the sixth) equation of Eq. (3.2.2),
implies that e;(f?)/f* = e(log(f?)) is independent from the fibres, hence, f? can be
rewritten as the product of f3, depending only on B, and f2 depending only on the
fibres. Changing the metric on B such that {fgb;}; form an orthonormal frame, we can
reabsorb ¢;(f?) into the connection term and assume f independent from the base. [J

0

Remark 3.2.7. Observe that the isotropy condition rules out well-known examples coming
from lower dimensional geometries. For instance, one can notice the product of a Calabi-
Yau manifold with a flat R is a Gg-manifold of the form described in Proposition 3.2.4.
However, the f; or g; corresponding to the flat direction would need to be constant. This

clearly gives a contradiction unless we are in the flat local model, where they all coincide.

3.3 Linear Cayley fibrations

Similarly to linear coassociative fibrations, we consider locally trivial Cayley fibrations

with a compatible vector bundle and Spin(7)-structure.

Definition 3.3.1. Let (M, ®) be a Spin(7) manifold and let B a 4-dimensional manifold.
A locally trivial Cayley fibration 7 : M — B is a linear Cayley fibration if the following

conditions are satisfied:
e 71 : M — B has the structure of a Euclidean vector bundle,

e the connection H is linear, i.e., it is induced from a covariant derivative V, and it

is compatible with the Euclidean structure,

e at every point of B there exists a local coframe {bg, b1, be, b3} of B and a local or-
thonormal trivialization of the bundle {0y, 01, 02, 03} such that the Spin(7)-structure

on M is given by:
D :=fo12300 A b1 Aba A bs + gor23&o AN &1 A& A &+

3
+) (goio A& — gk A &) A (foibo A bi — fikbs A bg),
i=1
where f;, g; are smooth positive functions on M and (i, j, k) is a positive permutation

of (1,2,3) and {&o, &1, &2, &3} is the dual of the basis induced by the o; on the vertical

space.
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Example 3.3.2. The local model R® = R* @ R*, as described in Section 2.3.1, is a linear
Cayley fibration. The product of a flat R* with an hyperkiihler manifold is a linear Cayley
fibration. In these cases, the connection is trivial.

A nontrivial example consists of the Bryant-Salamon manifolds $_(S*). The linear

connection is simply the spin connection in this setting.

3.3.1 The system of PDEs for linear Cayley fibrations

As in Section 3.2.1, we rewrite the local system of PDEs for the torsion-free condition
in the linear Cayley fibrations case. Let {by, b1, b2, b3} be as in Definition 3.3.1 with dual
frame {eq, e1, €2, €3}. The frame induces a metric on B, gp := E?:o b?, and hence a relative
Levi-Civita connection form {wf }. This connection form and the relative curvature 2-form,

R € so(n), satisfy the structure equations:

db=—w ADb,

R=dw+wAw.

We parametrize the fibres by agog + a101 + as05 + azo3, where the o;s are as in Defi-
nition 3.3.1. If {A{ } € so(n) is the connection matrix with respect to this trivialization,
then the curvature matrix is {F} = dA! + 37, Aj A AL }.

The dual of the horizontal and the vertical spaces are spanned, respectively, by:
n
b; .= 7" (b;), & = da; + ZAﬁal,
1=0

fori =0,...,3.
An explicit computation, similar to the one for Proposition 3.2.4, gives the system of

PDEs for the torsion-free condition.

Proposition 3.3.3. Let 1 : M — B be a linear Cayley fibration. The torsion-free

condition becomes, in a local trivialization as in Definition 3.3.1, the following system of
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PDFEs:

(0= Zl =0, al(f0123)§z A voly
+ZZ 12 A (g0i(Fy A&~ Fi N 6) = g50(FY A\ & — F: AED)
0= Zl =0 (61(90123)bz Oy (Go123) S0 o Al am) A voly
0= Ez 1 (Zlm 0(6alfjk)amAl A b; /\ b — Zlm 0(8alf01)amA A by A b) AT+
+(Zlm 0( azgjk)amA NENEL — Zlm 0( algo,)amA A& /\&) A Qz+
+( Zl o(ezQOz)bl N NE — Zl O(GZng)bl A& A gk) A Q i
(2o (erfor)bu Abo Abi — S0 (enfin)bu Aby Abi) ATt
+((w kf()z w?fjk)bo A by — (Wffjk - w?fOi)bi A bj)) AT ,
(k= w0y for)bo A b = (wifor = wigilbe Abi) AT
—i—((Akgm A?gjk)fo A& — (ginAF — A?Qoz')& A 6]-)) /\~Q
+((AQgr — Algoi)éo A& — (ALgoi — Algi)Ex A ) A0,
=2 (Z?ZO ((Day foi)bo N bi = (Day fi1)bj A Dk) A &) AT
H algm)ﬁo A& = (Dugin)&; N &) NE) N
+g0123 2 po(FLA & A o A EN L NE)

(3.3.1)
where Fé = Zm Oanam, voly = by A by Aby Abs, Qi i= foibo Ab; — fixbj A by and
Ti = goi€o A & — gik&s N k-

Example 3.3.4. We now give a local example of linear Cayley fibration. Let B be

a self-dual, Einstein 4-manifold of scalar curvature k£ with local orthonormal coframe

{bo, b1, bs,b3}. Consider on B the 1-forms p;, for i = 1,2, 3 characterized by the equation:

0 0 —2p3  2p2 0
d{ Q)] =—| 2p3 0 =2p | A ||,
Q3 —2p2 2p1 0 Q3

where €); = by Ab; —bj Aby. Let E be a Euclidean vector 4-bundle with local orthonormal

sections, {09, 01, 02,03}, and let A be the metric compatible connection:

0 - —Q —Qs3

A= (05} 0 —Q3 — 2,03 Qo + 2[)2
(6%) s + 2p3 0 —Q — 2p1 ’
a3 —ag —2py Qi+ 2p 0,

where the q;s are such that A is compatible with the curvature matrix:

0 Q Qy Q3

El-Q 0 —Q3 O
2 —QQ Qg 0 —Ql ’

—Q3 —Qy 0
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Le. F=dA+ANA. T {&, &, &, &3} are the vertical 1-forms dual to the basis induced by

the o;s on the vertical space, then, it is straightforward to check that the Spin(7)-structure:

3
‘I’:beo/\bl/\b2/\b3+92§0/\51/\52/\§3+fgzﬂi/\(50/\&'—§j/\fk)

=1

is torsion-free when f, g are functions only depending on the square of the distance from

the zero section, 72, and satisfying the ODEs in r:

(fo) =50 ()= fg

We call such examples deformed Spin(7) Bryant—-Salamon manifolds. Indeed, if we pick
a; = —p;, then, F becomes the negative spinor bundle over B and we recover the Spin(7)

Bryant-Salamon manifolds (cfr. Remark 2.3.14).

3.3.2 Isotropic linear Cayley fibrations

Under the same isotropy condition as in Section 3.2.2, we are able to solve the PDE system

of Proposition 3.3.3. The proof is conceptually identical to the one for the Gy case.

Theorem 3.3.5. Let M be a Cayley vector bundle such that the horizontal and the vertical
spaces are isotropic, i.e., for every p € M and unit v,w € H, C T,M (orV, C T,M)
there exists a local isomorphism ¢ of (M, ®) such that p.(v) = w. Then, (M, ®) is locally

isomorphic to a deformed Spin(7) Bryant-Salamon manifold.

Proof. The isotropic condition implies that there are two functions, f, g on M such that
fY?2 = f; and ¢g'/? = g; for all i = 0,...,3. Under this condition, the system Eq. (3.3.1)

becomes:

(0=3"7 0., ()& Av01H+Z§:1 FaU N (FQNE& — FiN&) — (Fi A& — FENE)))

O—Zzo(el( ) — 0u,(9%) Yoo ALt

0=>0 (= Zlmoal(fg)am ) (bo Ay —bj Nbi) A (§o A& — & N &x)
(Zzoel( 9)bi) A (bo A by — by ANbp) A (&0 A& — &5 N &)
+2fg(pr + pr) A (bo Abj — b Abi) A (o A& — & A &k) ’
—2fg(p; + pj) N (bo/\bk—b AND) N (o NE — & NEk)

OZZ?:lz?O(al fg)) bO/\b_b /\bk) (fo/\éi—fj/\fk)

| P D ELAG A AGA N E)

(3.3.2)

where Q; = by A b; — b A\ by, 2p; = wf — w) and 2p; = A} — Ag? for all (7,7, k) cyclic

permutation of (1,2, 3).
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We begin our analysis from the last equation, which, once expanded and regrouped

term by term, can be rewritten as:

3

PF = 0u(f9)h, (3.3.3)
=1

GPF = —00y(f9)% + 00, (f9)2 — Do, (fO)U  Vi=1,2,3. (3.3.4)

Since {F}} is antisymmetric, we also deduce that:

_ 2Fa ZE fg N

where the E;s are the generators of sp(1):

El = alaao - aoaal - a38a2 + a28a3>
E2 = a28ao + a3aa1 - aOaGQ - alaasa
E3 = a38a0 — azaal + al(‘?az — aoc‘?%.

In particular, fg depends only on 72 in the fibre, and hence, 9,,(fg) = 2a;( fg) Using
again Eq. (3.3.3) and Eq. (3.3.4), it is straightforward to obtain:

G =2(fg)r*Q; (3.3.5)
for all ¢ = 1,2,3, which also implies that Fglgll = —Ffzg = Fj{g =...= Fg% Now, as
E;(F, (f)l) = 0, we conclude that F,/ depends only on r? in the fibre. Therefore, this must
be the case for g and f as well. Taking Eq. (3.3.5) along the coordinate lines we also
obtain:

ok
95 = 2(fg). (3.3.6)
where

k=2F), = —2F}), = 2F},; = —2F},, = —2F},, = 2F},

jij
for all (i, j, k) cyclic permutation of (1,2, 3).

We now turn our attention to the other equations. Plugging in Eq. (3.3.3) and
Eq. (3.3.4) into the first equation of our system, we see that f and g need to satisfy:

9f =3(fg). (3.3.7)

The second equation of Eq. (3.3.2), implies that ¢ does not depend on the basis.
Therefore, we only have to study the third equation of Eq. (3.3.2).
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Claim: Up to changing the metric on gp, f can be assumed to be independent from
the basis B.
This claim implies that k is a constant and that the third equation of the system

becomes:
(P + i) A (bo ANbj — b ANb;) — (pj + pj) A (bo A b — by ANbj) =0, (3.3.8)

for all (7, j, k) positive permutation of (1,2,3). Indeed, k& depends only on the base by
definition and only on r by Eq. (3.3.6).
It is straightforward to verify from Eq. (3.3.8) that p; + p; = 0, and hence, we can

compute the curvature of the ASD two forms on B:

d(2pi) + (2p; A 2px) = — (d(2p:) — (2p; N\ 2pk))
— —Fg + ij

We deduce that B must be self-dual and Einstein [19, Fact pag. 842] and we conclude.
Proof of the claim: As f,g are functions of r? in the fibres, the third equation of
Eq. (3.3.2) becomes:

e(f) =4fk, (3.3.9)

where,

kO = (IOZ + ﬁz)z Vi = ]-7 27 37
ki == (pj +pj)k = —(or + pr)j = —(pi + pi)o V(i, 4, k) ~ (1,2,3),

and where we use the convention that, given an horizontal 1-form «, we denote by («),
the coefficient of « in the b; term.

From Eq. (3.3.9), we deduce that ¢;(log f) is independent from the fibres for every [,
and hence, f = fg - fr where fp is a function only depending on the basis and fr is a
function only depending on the fibre. The last crucial observation is that, changing the
metric on B such that { fjlg/ Qbi}i form an orthonormal frame, we can reabsorb ¢;(f) into
4fk; and assume f independent from the base. [

O

Remark 3.3.6. Observe that the isotropy condition rules out well-known examples coming
from lower dimensional geometries. For instance, the product of a Gy Bryant—-Salamon

manifold with a flat R is a Spin(7)-manifold of the form described in Proposition 3.3.3.
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However, the f; or g; corresponding to the flat direction would need to be constant. This
clearly gives a contradiction unless we are in the flat local model, where they all coincide.
Another remarkable example is the one given by the Stenzel metric on 7*S*. However,
it is easy to see that this space doesn’t satisfy the isotropic condition (see for instance
equations (2.3), (2.4), (2.5) in [72]).
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Chapter 4

Cayley fibrations in the
Bryant—Salamon Spin(7) manifold

This chapter is devoted to the description of the author’s construction of Cayley fibrations
in the Bryant—Salamon Spin(7) manifolds (cfr. [71]). It is interesting to notice that the
fibres of these fibrations provide new examples of Cayley submanifolds.

The main idea used in the construction is to reduce the problem to a system of ODEs
via a group action. In particular, we consider G a 3-dimensional Lie group acting on the
given Spin(7) manifold. By Theorem 2.3.8, there exists a unique Cayley passing through
any 3-dimensional orbit of G. Hence, if the principal orbits are 3-dimensional, it is sensible
to look for G-invariant Cayleys and fibrations.

Obviously, in the non-singular set, any G-invariant submanifold ¥ can be seen as a
1-parameter family of G-orbits or, equivalently, as a curve in the space of orbits. Hence,
the tangent space of ¥ can be represented as the tangent space of the orbits together with
the velocity vector field of the curve. One can now plug in these tangent vectors into
7 (see Proposition 2.3.9) and obtain an explicit system of ODEs. The solutions of this
system will parametrize the Cayley fibrations, as defined in Definition 3.1.5.

The obvious place where to look for such a group is the automorphism group, which
is Sp(2) x Sp(1) in our setting. In order to simplify our computations we will consider
only the 3-dimensional subgroups that do not sit diagonally in Sp(2) x Sp(1). These were

characterized in Section 2.3.3.3.

4.1 Cayley fibration invariant under the Sp(1)-action on
the fibre

Let M := $ (S*) and M, := Rt x ST endowed with the torsion-free Spin(7)-structures
®, constructed by Bryant and Salamon and described in Section 2.3.3.

50



Observe that (M, ®.) and (M, Py) admit a trivial Cayley Fibration. Indeed, it is
straightforward to see that the natural projection to S* realizes both spaces as honest
Cayley fibrations with smooth fibres diffeomorphic to R* and R* \ {0}, respectively. In
both cases, the parametrizing family is clearly S*

The fibres are asymptotically conical to the cone of link S® and metric:

9
ds® + 2—532 Js3,
where s = 73/°10/3 and ggs is the standard unit round metric.

Since Idgp2) X Sp(1) acts trivially on the basis, and as Sp(1) on the fibres of § (S?)

identified with H, it is clear that the trivial fibration is invariant under Idgp2) X Sp(1).

Remark 4.1.1. We compute the associated multi-moment map, v,, as in Definition 2.4.6.
This is:
20

Ve i= —(r? — 5¢)(c + %)% +

3 o

3

where we subtracted ¢%°100/3 so that the range of the multi-moment map is [0, 00).
Observe that the level sets of v. coincide with the level sets of the distance function from

the zero section.

Remark 4.1.2. As in [49, Section 4.4|, this fibration becomes the trivial Cayley fibration

of R® = R* ® R* when we blow-up at any point of the zero section.

4.2 Cayley fibration invariant under the lift of the SO(3)x
Ids-action on S*

Let M := $ (S%) and M, := R" x S7 be endowed with the torsion-free Spin(7)-structures
®. constructed by Bryant and Salamon that we described in Section 2.3.3. On each
Spin(7) manifold, we construct the Cayley Fibration which is invariant under the lift to
M (or M) of the standard SO(3) x Ids-action on S* C R® @ R%

4.2.1 Choice of coframe on S*

As in [49], we choose an adapted orthonormal coframe on S* which is compatible with the
symmetries we will impose. Since the action coincides, when restricted to S*, with the
one used by Karigiannis and Lotay on A% (7*S*) [49, Section 5|, it is natural to employ

the same coframe, which we now recall.
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We split R® into the direct sum of a 3-dimensional vector subspace P = R3 and its
orthogonal complement P+ = R2. As S* is the unit sphere in R, we can write, with

respect to this splitting:
' ={(ey) € PO P x4 [y =1}

Now, for all (x,y) € S* there exists a unique a € [0, 7/2], some u € S* C P and some
v € St ¢ Pt such that:

X = cos au, y = sinav.

Observe that u and v are uniquely determined when o € (0, 7/2), while, when oo = 0, 7/2,
v can be any unit vector in P+ (y = 0) and u can be any unit vector in P (x = 0),
respectively. Hence, we are writing S* as the disjoint union of an S?, corresponding to
a =0, of an S!, corresponding to a = /2, and of S? x S* x (0,7/2).

If we put spherical coordinates on S? and polar coordinates on S!, then, we can write
u = (cosf,sin @ cos ¢, sin O sin ¢),

and

v = (cos f3,sin f3),

where 6 € [0, 7], ¢ € [0,27) and 5 € [0,27). As usual, ¢ is not unique when 6 = 0, 7.

It follows that, if we take out the points where § = 0,7 from 5% x S! x (0,7/2), we
have constructed a coordinate patch U parametrized by («, 3,0, ¢) on S*. Explicitly, U
is S* minus two totally geodesic S?:

S2 ={(x,0)e P® P :[z|* =1},

y1,y2=0 —

corresponding to aw = 0, and

S2 = {(cos ,0,0,sincvcos B, sinasin f) € P & Pt ac (0,7m)},

z2,x3=0

corresponding to = 0 and 6 = m. Observe, that the S' corresponding to o = 7/2 is a

totally geodesic equator in SZ, . _.

A straightforward computation shows that the coordinate frame {0,,0s,09, 0y} is

orthogonal and can be easily normalized obtaining:

0 0 0
for=0ar  fri=o i frimoe fyi=m

sina’ cosa’ cosasinf’
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The dual orthonormal coframe is given by:
by :=da, by :=sinadf, by:=cosadf, bs:= cosasinfdo. (4.2.1)

Observe that {bg, by, be, b3} is positively oriented with respect to the outward pointing

normal of S*, hence, the volume form is:

volgs = sin avcos® asinfda A dB A df A dep.

4.2.2 Horizontal and the vertical space

As in [49, Subsection 5.2, we use Equation (2.3.1) to compute the p;’s in the coordinate
frame we have just defined. Indeed, Eq. (4.2.1) implies that:

0 = sinada A df — cos® acsin 0dO A do,
2y = cosada N df — sinacos asinOde A df, (4.2.2)
Q3 = cos asin Bda A\ dp — sin accos adfS N db;

hence, we deduce that:

dQ; = 2sinacos asin Oda A df N do,
dQy = (sin® @ — cos® ) sin Oda A dg A dff — sin acos o cos 0df A dé A df3,
dQ3 = cos acos 0dO A da A dep + (sin® oo — cos® a)dar A dB A db).

We conclude that in these coordinates we have:
2p1 = —cosadf + cos Odp;  2py = sinadf; 2ps = sin asin Ode.

Now that we have computed the connection forms, we immediately see from Eq. (2.3.2)

that the vertical one forms are:

& = dag + ay _cosadﬁ+cos do +a281nad€+a3wd¢,
2 2 9 5
51 - dal — Qo (_Cosadﬁ + COQSQdé) - CLQWCZQS + a351nad6,
i inasi (4.2.3)
fQZdaz—a081nad0+alwd¢_a3 _COSOédB+COS(9d¢ 7
2 2 9 5
. o . .
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4.2.3 SU(2)-action

Given the splitting of Section 4.2.1, R® = P @ P+, since P = R? and P+ =~ R?, we can
consider SO(3) acting in the usual way on P and trivially on P*. In other words, we see
SO(3) 2 SO(P) x Idpr C SO(P @ P*) = SO(5). Obviously, this is also an action on S*.

By taking the differential, SO(3) acts on the frame bundle Psoy) of S*. The theory
of covering spaces implies that this action lifts to a Spin(3) = SU(2)-action on the spin

structure Pspinay of S4. In particular, the following diagram is commutative:
= Pgpin(a)

(4.2.4)

Spin(3) X PSpin(4) TX) SO<3) X Pso(4) e Pso(4)
7T0 s

Finally, if Spin(3) acts trivially on H, we can combine the two Spin(3)-actions to obtain

one on Pspinsy X H, which descends to the quotient Pspincsy %, H =3 (S%).

Remark 4.2.1. Recall that T'S* = Psoa) X. R*, where - is the standard representation of
SO(4) on R*. Let G be a subgroup of SO(5) which acts on Pso) x. R* via the differential
on the first term and trivially on the second. It is straightforward to verify that this

action passes to the quotient and that it coincides with the differential on 7'S%.

Now, we describe the geometry of this Spin(3)-action on $_(S?*). Since 7 is fibre-
preserving and (Eq. (4.2.4)) represents a commutative diagram, we observe that, fixed
a point p = (x,y) € S* C P @ P+, the subgroup of Spin(3) that preserves the fibre of
Pspin(a) over p is the lift of the subgroup of SO(3) that fixes the fibre of Pso) over p.

We first assume o # /2. The subgroup of SO(3) that preserves the fibres of Pyoa)
rotates the tangent space of S? C P and fixes the other vectors tangent to S*. Explicitly,
if {e;}2_, is the oriented orthonormal frame of Section 4.2.1 (or an analogous frame when
a=0,0=0,7), the transformation matrix under the action is:

Id, ]

hy = cosy —siny | € SO(4), (4.2.5)
siny  cosvy

for some v € [0, 27).

Claim 1. For all v € [0,47), under the isomorphism Spin(4) = Sp(1) x Sp(1), we have:
ﬁé(ﬁv) = h,

where hy, = (cos(7y/2) + isin(y/2), cos(vy/2) + isin(v/2)).
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Proof. Tt is well-known that, in this context, 7 ((1,7))-a = laT for all (I,7) € Sp(1)xSp(1)

and all @ € H = R*. The claim follows from a straightforward computation. O

Using once again the commutativity of (Eq. (4.2.4)) and Claim 1, we deduce that the

action in the trivialization of $_(S*) induced by {e;}?_, is as follows:

UxH ——— (U x Spin(4)) x,. H —— (U x Spin(4)) x,, H —— U x H

(p7 a’) — [(pa 1Spin(4));a] > [(pa ;”’7)7(1] —_ (p7 af]”y)
where fAL7 := cos(y/2) — isin(y/2) and where a € H. If we write both R? factors of
H = R? @ R? in polar coordinates, i.e.,

a = scos(y-/2) 4+ issin(y-/2) + jt cos(y4/2) + ktsin(y,/2),

for s,t € [0,00) and . € [0,47), we observe that

ah, = scos ((y- —v)/2) + issin (- —7)/2) + jtcos (4 +7)/2) + kt sin((74 +7)/2).

Geometrically, this is a rotation of angle —v/2 on the first R? and of angle v/2 on the
second.
Now, we assume o = 7/2. In this case, the whole Spin(3) fixes the fibre of §_(S5?).

Claim 2. Spin(3) acts on the fibre of $_(S*) as Sp(1) acts on H via right multiplication

of the quaternionic conjugate.
Proof. Consider an orthonormal frame such that, at p = (0, cos /3, sin 3), has the form:
eop = —sin 305 + cos B0y; €1 = 0p;  ea =01; ez =0y,

where 0; are the coordinate vectors of R®> 2 P @ PL. Observe that the SO(3)-action fixes
eo and acts on eq, eg, e3 via matrix multiplication. In particular, given G € SO(3), the
transformation matrix of the frame at p is:
1
ol
Moreover, for all g € Sp(1) = Spin(3) and (g,¢9) € Sp(1) x Sp(1) = Spin(4), then

70((9,9)) = { ! =0) } ,
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where we recall that 73(1) - # = lzl for all [ € Sp(1) and z € ImH = R3. Indeed, the
left-hand side reads:

5((9,9)) - a = gag = gRe(a)g + glm(a)g = Re(a) + glm(a)g,
while the right-hand side is:
1 Re(a)
[ 7(0) } o ( gm(a)g > |
We conclude the proof through the commutativity of (Eq. (4.2.4)). O

We put all these observations in a lemma.

Lemma 4.2.2. The orbits of the SU(2) = Spin(3)-action on $_(S*) are given in Table
Table 4.1.

a (s,t) | Orbit
#21=(0,0)] 5°
#5 | #(0,0)] &
=5 |=1(0,0) | Point
=2 |#(0,0)] 5°

Table 4.1: Spin(3) Orbits

4.2.4 SU(2) adapted coordinates

The description of the SU(2)-action that we carried out in Section 4.2.3 suggests the

following reparametrization of the linear coordinates (ag, a1, as, az) on the fibres of §_(S%):

Qg = S COoS 6_—7 :a; = Ssin 5_—7 : a9 = tcos 5+_7 ;a3 = tsin 6—’__7
0 — 9 ) 1 — 9 3 2 — 9 3 3 — 9 )

(4.2.6)

where s,t € [0,00), v € [0,47) and ¢ € [0,27). This is a well-defined coordinate system
when s and ¢ are strictly positive; we will assume this from now on. Geometrically, ~
represents the SU(2)-action, while ¢ can be either seen as the phase in the orbit of the
action when (ag,a;) = (s,0) or as twice the common angle in [0,7) that the suitable
point in the orbit makes with (s,0) and (¢,0). These interpretations can be recovered by

putting v = § and v = 0, respectively.
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Similarly to [49], we introduce the standard left-invariant coframe on SU(2) of coor-

dinates 7, @, ¢ defined on the same intervals as above:
o1 = dy + cosOdp; o9 = cosydf + sinysinOdp; o3 = sinydf — cosysinfdep. (4.2.7)
Observe that:
o9 N\ o3 = —sin0df A do. (4.2.8)

Our choice of parametrization of $ (S*) implies that Eq. (4.2.7) is a coframe on the
3-dimensional orbits of the SU(2)-action.

So far, we have constructed a coordinate system «, 3,80, ¢, s, t, 9, defining a chart U of
$ (S*) and a coframe {0y, 09, 03, da, df3,ds,dt,d5} on that chart. These coordinates and
coframe are such that v, 0, ¢ parametrize the orbits of the SU(2)-action and {7y, 09,03}
forms a coframe on these orbits. Let {01, 02, 03,04, 03, 0s, 0, 05} be the relative dual

frame.

4.2.5 Spin(7) geometry in the adapted coordinates

In this subsection, we write the Cayley form ®,., as in Eq. (2.3.3), and the relative metric
ge, as in Eq. (2.3.4), with respect to the SU(2) adapted coordinates defined in Section 4.2.4.

Lemma 4.2.3. The horizontal 2-forms €y, 2o, Q3, in the adapted frame defined in Sec-
tion 4.2.4, satisfy:

Q0 = sinada A dB + cos® aosy A o3

and
cos Y2 + sin Q23 = cos a(da A oy — sinadf A o3),
—sin vy + cos Y823 = cos a(—da A o3 — sinadf N 03).
Proof. The equations follow from Eq. (4.2.2), Eq. (4.2.7) and Eq. (4.2.8). O

Lemma 4.2.4. The vertical 2-forms Ay, As, As, in the adapted frame defined in Sec-
tion 4.2.4, have the form:

COSs «v

1 1
A zi(sds — tdt) A do + (sds + tdt) Ndp — i(sds + tdt) A oy

sin? o st sin «v

oo N\ 03 +

sin o

(tds — sdt) A oz + (s* +2) aa A do,
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Ay =cosvyds N dt — %sin’yds A (dy + do) — gsin'ydt A (dé — dry) — %tcosq/d'y A dd

sin o cos o

2 2
— +1
(S ) 1

sin0dfB A de + sin~(sdt — tds) A (_COSOédB cos0d¢>

0
+ st cos ydo N (— CO; adﬁ cos d(b) Slgadﬁ A (tdt + sds)

t*sin asin 6 2 6
sm;)zsm (dfy—i—dé)/\d¢+8 sm;sm 46 A (d6 — d):
t t
Az =sinyds A dt + écosq/ds A (dy + dd) + %cosydt A (do —dvy) + %sinfydé A dry
sin «

+ (% + tz)T(cos adf A df + cos0dd N do)

— cosy(sdt — tds) A (_cosadﬁ cos? gb)

CoS (v
2

2 sin «v s%sina

do A (dvy + do) +

0 in o
+ st sinydd A (— g+ == d¢) %dm(tdwsds)

(d6 — dvy) A d6.
(4.2.9)

Proof. Computing the exterior derivatives of the a;’s in the coordinates of Eq. (4.2.6), we

can reduce our statement to a long computation based on Eq. (4.2.3). O

Corollary 4.2.5. The vertical 2-forms Ay, Ay, As, in the adapted frame defined in Sec-
tion 4.2.4, satisfy:

t si t si
Ay = (ds i 812“0‘02) A (§d5+ 508 15 — fo—l n Smo‘ag>

2 2
. ; ’ . (4.2.10)
ssin « CcoS (v ssma
and
ti )
cosyAs + sin YAz :(ds + Sl;a@) A (dt — ss;na@) (4.2.11)
S SCOS S tsin «
+(§d5 +— dp — 01t — 03) N
t tcos o t ssin o
A (Ed(s — dﬁ 50'1 9 03) ;
t si t i
cos yAs — sinyAs :(ds + Sl;aaz) A <§d6 . Cosadﬁ 5512110‘03)
a— ssina(72 A idé scosa 8 — _01 tsinoz(73 '
2 2 2
(4.2.12)
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Proof. The first equation in Lemma 4.2.4 is exactly the development of Eq. (4.2.10).
A straightforward computation, involving Eq. (4.2.9), gives:

cos YAy + sinyAz = ds A dt + %tdé Aoy — %tcos adé AdB + (s* + t%@dﬁ A o5
L A (bt + sds) + TSI s
GRS sj) sin aal Aoy
cosyAz — sinyAy = %(tds — sdt) N oy + %(tds + sdt) AdS + (s* + t%Wdﬁ D)
X (sdt — tds) A df + Si%(tdt + sds) A oy
(s? + t?) sin« (t? — s%) sin«

- A
1 o1 0'2+

which coincide with the development of Eq. (4.2.11) and Eq. (4.2.12), respectively. O

oo N do;

Remark 4.2.6. Using the identities:

1
bo Aby Aby ANbs = —=Q1 Ay,
: (4.2.13)
50/\51/\52/\&3:—5141/\141

and

3
Z A N =A1 Ay + (cos e + sinyQ23) A (cosyAg + sinyAs)

=1

(4.2.14)
+ (—sin Qs + cos ¥Q23) A (—siny Ay + cosyAs3),

one could easily find ®. in the adapted frame of Section 4.2.4. It is clear from Corol-

lary 4.2.5 that it is not going to be in a nice form.

Lemma 4.2.7. Given ¢ > 0, the Riemannian metric g., in the adapted frame of Sec-
tion 4.2.4, takes the form:

ge =5(c+1%)*/% (do? + sin® adB? + cos® a(o3 + 03))

r? cos® « 2 r? cos r?sin? o

+d(c+r?)7H0 <ds2 + dt* + 1 dB* + %0% - Tdﬁfﬁ + 1 (03 + 03)
2 _ 2 2 2 _ 2
+ Qdéal + (stsina)ddos + %ch? + sin a(tds — sdt)os — Wd&w),

where r? = s + t2.

Proof. Combining Eq. (2.3.4), Eq. (4.2.1), Eq. (4.2.3) and Eq. (4.2.7)), it is easy to obtain

the Riemannian metric in the claimed form. O
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4.2.6 Diagonalizing coframe and frame

In this subsection we define the last coframe on $ (S*) that we will use. The motivation
comes from the form of Ay, cosyAy + sinyAs and cosyAs — sinyA, that we obtained in
Eq. (4.2.10), Eq. (4.2.11) and Eq. (4.2.12), respectively. We let:

~ tsin « ~ ssin o
ds = ds + 09; dt = dt —

02;
wy = sdd + scos adfl — soy + tsin aos; wy = tdd — tcosadf + toy + ssin aos.

(4.2.15)

Since tw; + swy = 2tsdd + (t* + s*)sinaoz and swy — tw; = 2sto; — 2stcosadfB +
(s> — t?)sinaos, it is clear that {09, 03, do, df, wy,ws, ds,dt} is a coframe on U. Let

{€e2, €3, €, €8, €4, €uy, €5, €1} denote the relative dual frame.

Corollary 4.2.8. The vertical 2-forms Ay, Ao, Az, in the coframe defined in this subsec-

tion, satisfy:

A= % <d~$ Awy — dt A wg) (4.2.16)
and
cos YAy + sinyAs = ds A dt + iwl A Wa; (4.2.17)
cos Az —sinyAy; = % (d~s A ws + dt A wl) . (4.2.18)
Proof. 1t follows immediately from Corollary 4.2.5 and Eq. (4.2.15). O

Proposition 4.2.9. Given ¢ > 0, the Cayley form ®., in the coframe defined in this

subsection, satisfies:
®, =4(c+ r2)ds Adt Awy Awy + 25(c+12)%Psinacos? ada A dB A o A oy

10(c + 7”2)1/5( (d~s Awy — dt A w2> A (sin ada A df + cos® aoy A 03)
1/ - - (4.2.19)
+ 5 (4ds Adt+wp A (.(.)2) A (cosa(da A oy —sinadf A 03))

+ (cfs/\w2+cit/\w1> Acosa (—da A o3 —Sinadﬁ/\@)),

where r? = s + t2.

Proof. This is a straightforward consequence of Lemma 4.2.3, Eq. (4.2.13), Eq. (4.2.14)
and Corollary 4.2.8. O
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Proposition 4.2.10. Given ¢ > 0, the Riemannian metric g., in the coframe defined in

this subsection, satisfies:

ge =5(c +1r%)*° (da” + sin® adB® + cos® a (05 + 03))

- - 2 2 4.2.20

+d(c+r?) <d32 +df o+ W) (4.2.20)
where r* = s? + 12,

Proof. The first addendum remains invariant from Lemma 4.2.7, while Eq. (4.2.15) implies

that the remaining part is equal to the second addendum in Lemma Lemma 4.2.7. O

In particular, using this coframe, we sacrifice compatibility with the group action to
obtain a simpler form for ®. and a diagonal metric.

We conclude this subsection by computing the dual frame with respect to the SU(2)
adapted frame {0y, 0a, 03, O, O, Os, O, Os }.

Lemma 4.2.11. The dual frame {ea, €3, €q, €p, €u,, €y, €s, €1} satisfies:

o = Oy eg = Op + cos ady;
tsin o ssin (s + t*)sin« (t* — s*) sin«

€9 = 0y — 0s + 0y; =03 — 19) O1;

2 2 5 5 t €3 3 o5t s + 9t 1

es = 0s; ey = O;

1 1 1 1
w1 — _a - _a ; wo — A, — 0y
Cor = 959 T 9 Cor = 505 F 500
(4.2.21)

where {01, 02,05, 0y, 0p, 05,04, 05} is the dual frame with respect to the SU(2) adapted

coordinates of Section 4.2.4.

Proof. Tt is straightforward to verify these identities from Eq. (4.2.15) and the definition

of dual frame. O

4.2.7 Cayley condition

As the generic orbit of the SU(2)-action we are considering is 3-dimensional (see Lemma
Lemma 4.2.2), it is sensible to look for SU(2)-invariant Cayley submanifolds. Indeed,
Theorem 2.3.8 guarantees the local existence and uniqueness of a Cayley passing through
any given generic orbit. To construct such a submanifold N, we consider a 1-parameter

family of 3-dimensional SU(2)-orbits in M. Hence, the coordinates that do not describe
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the orbits, i.e. «, [, s, t and J, need to be functions of a parameter 7. Explicitly, we have:

N :{ ((COSQ(T)u, sin a(7)v), ((S(T) cos (5(7)7—7) ,8(7) sin ((S(T)T_O ’

£(7) cos (‘5(7)%) t(7) sin <5(7)%> )) Jul = V] = 1,7 € [0,4n), 7 € (—e,e)},

(4.2.22)
and its tangent space is spanned by: {9, 02, 03, $0, +10, + Dy + B@g —I—&%}, where the dots
denotes the derivative with respect to 7. The Cayley condition imposed on this tangent

space (see Proposition 2.3.9) generates a system of ODEs in «, f3, s, t, 6.

Proposition 4.2.12. Let N be an SU(2)-invariant submanifold as described at the be-
ginning of this subsection. Then, N s Cayley in the chart U, defined in Section 4.2.4, if
and only if the following system of ODFEs is satisfied:

(5% + %) sin® acos aff = 0

cos? a(ts — st) =0

cos? astd = 0
< 5(c + %) cos® ascv—1r? sin® acvs +2 sin a cos at?$4-4 cos asin as?$+2sin o cos astt = 0
5(c + r?) cos® atce—r? sin? vt +2 sin o cos as®t+4 cos avsin at*t+2 sin o cos asts = 0

5(c +r?)sina cos® affs — 2sin a cos at?sd — r*sin® afs = 0

[ — 5(c + r?) sin a cos® afft — 2sin a cos ats?d + r?sin® afft = 0
(4.2.23)

2

where 2 = s* + % as usual.

4.2.7.1 Proof of Proposition 4.2.12

In this subsection, we prove Proposition 4.2.12. First, we need to rewrite the tangent

space of NV in the diagonalizing frame of Section 4.2.6.

Lemma 4.2.13. The tangent space of N is spanned by:

sin o

U= tey,, — S€y,, UV:i=es+ (tes — sey), w:= ez +sina(tey, + sey,)

and

y = Ses + te, + deq + Beg +4 (sey, +tey,) -

Moreover, through the musical isomorphism, we have:

w = (c+ 1270 (twy — swy), v° = 5(c+ 1) cos? aoy + 2(c + 1) sina(tds — sdt),
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w” = 5(c 4 12)%/5 cos? ags + (¢ + r2) "/ sina (tw; + sw,)
and
y> =5(c+ r2)?5(ada + sin® aBdB) + 4(c + r?) "5 (sds + tdt) + (c + 12) 228 (5w + tws),
where 72 = 52 + t2.

Proof. One can immediately see from Lemma 4.2.11 that 9, = u, o = v and 05 =

se,, + te,,. We use these equality to obtain:

(82 + )05 — (12 — s1)01 = (5% + 1) (sew, + tew,) — (* — 5%)(tew, — S€u,)
= 2st(te,, + S€w,),
which implies that 95 = w. We conclude noticing that $9, + t0, + &da + B@B + 565 =
Yy — 6 cos a0, where we used once again Lemma 4.2.11. Obviously, the space spanned by
{u,v,w,y} coincides with the one spanned by {u,v,w,y — B cos ad }.

The second part of the Lemma follows immediately from Proposition 4.2.10, where we

proved that the metric is diagonal in this frame. O

Let B be as in Proposition 2.3.9. We compute the terms of B in the basis {u, v, w, y}.
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Lemma 4.2.14. Let u,v,w,y as in Lemma 4.2.13. Then, we have:

B(v,w,y) = 25(c + )% sin o cos® o Bdov — éud)
+2sin? a(c + 1)~ ((tt‘ 4 58)(tws — swn) — (2 — s2)§(tdt + sdis))

+5(c +r?)/5 (2 cos® a($wy — two + S(tdt — sds))

+ 2cos? asin a(tsdoy + (si — t5)as) + (s* + ) sin® a(@df — fda)
+ 2sin v cos « ((s2 — t})dda + cultwy — swl))
+ 4 cos asin® (B(sdis + tdt) — (s5 + ti)dﬂ) ) )

B(w,u,y) = 4(c+ )22 + s*) sina(ids — sdt)
+5(c+ 7’2)1/5( — 2cos? a(s$ + ti) oy — 2 cos asin astddf
+ cos asin afB(twy + swy) + 2cos a(st — t§)da + 2 cos ad(tds — sdt)
+ cos acsin a(t? + s%)coy — cos asin® a(t? + 82)603),

B(u,v,y) = 2(c+ r?)™ sin a(—20st(tdt + sds) + (tt + s$)(twy + swy))
+5(c+1%)Y? (= 2cos a(ss + tf)os — 2 cos astodor + cos aiv(swy + tws)
+ 2cosasina(ts — st)df + 2 cos asin aB(sdt — tds)
+ (8% + %) cos acsin avos + (5% + %) cos asin® aﬁag),

B(v,u,w) = 2(c +r?)"°sin® a(t* + %) (tdt + sds)
+ 10(c + 7“2)1/5( — cos® a(sds + tdt) + sin o cos ot + s%)da),

where B is defined in Proposition 2.3.9 and r* = s* + 2.

Proof. The multilinearity of the Cayley form ®. implies that the same property holds for
B. Now, expanding the formula (Eq. (4.2.19)) for ®., we obtain:

O, =4(c+ 7“2)_4/5d~s Adt A ws Awy + 25(c + 7“2)6/5 sin o cos® ada A dS A o5 A 04
10(c + 7"2)1/5 (sin ads A wy A da A dp + cos? ads Awy A gy A a3

—sinaa?t/\a@/\da/\dﬁ—COSQOz(ft/\ng/\og/\Ug-|-2(:080:d~s/\cit/\d0z/\02

CcoS & cos ar sin «v ~
+ CL)l/\CUQ/\da/\O'Q_#Wl/\Ldz/\dﬁ/\()'g_COSOédS/\CL)Q/\dOé/\O'g
—2cosasinads Adt AdB A oz — cosasinads A ws AdB A oo
— cos adt Awi Ada N oz — cos asin adt Awi AdS A 02>.
It is straightforward to conclude using the definition of B. O
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Consider the two-form given in Proposition 2.3.9 that projects to n through 77;. The
summands of such two form can be computed through a direct computation involving the

terms obtained in Lemma 4.2.13 and Lemma 4.2.14.

Corollary 4.2.15. Let u,v,w,y as in Lemma 4.2.13 and let Uy = u* A B(v,w,y), Uy =
0> A B(w,u,y), U3 = w® A B(u,v,y), ¥y = 3> A B(v,u,w), where B is as defined in
Proposition 2.3.9. Then, we have:

Wy = 25(c 4 r2)Y5sin a cos? atwy — swy) A (Bda — &df)
— (c+7%)7925in? a(t? — s%)d(tws — swi) A (tdt + sds)
+5(c+r?)~1/° (2 cos” o ((ts — st)wy A wy 4 6(twy — swy) A (tdt — 8d~8>)
+ 2sin acos® a (t85(tw2 — swy) A 0g + (st — t§)(twy — swy) A 03)

+ 2sin o cos a(s? — t2)0(tws — sw) A da

+ (£ + s sin® a(twy — swy) A (adB — Bda)

+ 4 cos asin® o (B(th — swi) A (sds 4 tdt) — (s$ + ti)(twy — swi) A dﬁ) ),

Uy = 25(c+ 7’2)4/5 < — 2cos® asin astdoy A dB + cos® asin afos A (twy + swo)
+2cos® a(st — t§)og A da + 2 cos® aciog A (tds — sdt)

— cos® asin? a(t? + s2)foy A 0'3>

+10(c + 7’2)1/5(2 sin o cos? a(t? 4 s2)og A (tds — sdt)

— 2cos asin® astd(tds — sdt) A df + cos asin® af(tds — sdt) A (twy + sws)
+ 2cos asin a(st — t3)(tds — sdt) A da — cos asin® at® + s2)aoy A (tds — sdt)

+ cos asin® a(t? + %) Bos A (tds — scft))

+ 8(c+ 12" sin? a(t? + %) (si — t5)ds A dt,
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Wy = 25(c 4 r2)Y/° ( — 2cos® astdog A do + cos® ados A (swy + twy)
+ 2cos® asin a(ts — st)os A df + 2cos® asinafos A (sdt — tds)
+ (5% + %) cos® asin® affog A 02)
— 4+ 127 sin? adst(twy + swa) A (tdt + sds)
+5(c+r?)71° (2 sin a cos® o ((ti + 58)03 A (twy + sws) — 20stas A (tdt + sd~s))

— 2sin o cos? a(ss + ti) (twy 4 swy) A 03 — 2 cos a sin astd(twy + swe) A da

+ 2cos asin® a(ts — st)(twy + swy) A df + 2 cos asin® af(twy + swsy) A (sdt — tds)

+ (5% + 1) cos acsin® adi(twy + swy) A o5 + (52 + %) cos asin® af(twy + sws) A 02) :
Uy = 2(c+r?)~sin? a(t? + s?) (5(sw1 + tws) A (tdt + sds) + 4(is — st)dt A d~3)

+50(c 4 r?)¥/5 ( — cos? a(ada + sin® afdB) A (sds + tdt)

+ cos asin® a(t? + s%)BdS A da>

+10(c +r*)7/5 ( sin? a(t? 4 s2)(ada + sin® aBdB) A (tdt + sds)

— 4cos a(st — is)ds A dt
+ 4sin a cos at? + s2)(sds + tdt) A do — cos® ad(swy + tws) A (sds + tdt)

+ sinacos a(t? 4 s2)d(swy + tws) A da) )
where r? = 52 + t2.

Moreover,
n=mr(V1+ Wy + U3+ Uy),

where n and m; are defined in Proposition 2.3.9.

Finally, we turn our attention to the map 77. As recalled in Remark 2.3.10, this map

is the projection to the linear subspace A2 of the space of 2-forms on M.

Lemma 4.2.16. In the coframe {02,Ug,da,dﬁ,wl,wg,cis,cit}, a basis for A2 is given by
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the following 2-forms:

Al = —cos oy A wy + da A woy —I—2sinadﬁ/\dt+2008a03 /\d~5,

Ao i=cosaog A ws + da Awy — 2sinadf A ds + 2 cos aos A dt,

A3 := cos aoz A wy + sinadf A wy + 2 cos aoy A ds — 2da A cit,

Ay i= —cosaoz A wsy + sinadf A wy + 2 cosaoy A dt + 2da A d~3,

A5 := 5(c + %) cos aos A da 4 5(c + r?) sin a cos aoy A df + 2ws A ds + 2wy A dt,
X6 := 5(c + r?)sina cos aos A dfB — 5(c + r2) cos aoy A da + wy A wy + 4dt A ds,
A7 :=5(c+ 12 sinadB A do + 5(c + %) cos® aas A gy + 2ds A wy — 2dt A w,.

Proof. Using the explicit formula for m; given in Proposition 2.3.9, it is easy to verify that
m7(\i) = \; for all i = 1...7. We deduce that the )\;s form a basis of Al as they are linearly

independent and the dimension of AJ is 7. O

At this point, the proof of Proposition 4.2.12 follows easily. Indeed, we can rewrite

the sum of the ¥; given in Corollary 4.2.15 as follows:

Uy 4 Uyt Uy + Uy =
=5(c +r2)~1/° (—5(0 + r?)sin v cos® aft + 12 sin® aft — 2sin o cos ozts25> A1
+5(c+ 7“2)_1/5<5(c + r2) sin o cos® affs—r? sin® afs — 2sin o cos at235> Ao
+5(c+ )70 <5(c + 72) cos® atév + 4 cos asin at*t + 2 sin o cos ast s

+ 2sin a cos as*t — r? sin? adt) A3 +5(c+ %718 < — 5(c+1?) cos® asd

— 4cosasinas®s — 2sin a cos astt — 2sin a cos at?s + r? sin? ads) A4

— 2cos” astd (25(c+7%)71/5N5)
+ 2cos”® a(ts — st) (25(c+ 7“2)_1/5)\6)
+ 2(s* 4+ t?) sin® arcos a3 (25(c + 7“2)_1/5)\7) :

From Corollary 4.2.15 and Lemma 4.2.16, we deduce the ODEs of Proposition 4.2.12.

Corollary 4.2.17. Let N be an SU(2)-invariant submanifold as described at the beginning
of this subsection. Then, N is Cayley in the chart U, defined in Section 4.2.4, if and only
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iof the following system of ODEs is satisfied:

(G=0
(ts —st) =0
§=0 ’
| 5(c +77) cos® astir — (5% + %) stsin® ok + 2sin o cos a(s” + %) (st + £5) = 0

2

where 2 = s* + % as usual.

Proof. As a € (0,7/2) and s,t > 0, we get immediately the first three equations from the
first three equations of Eq. (4.2.23). The last two equations of Eq. (4.2.23) are superfluous
as =0 and § = 0. The same holds for ¢ times the fourth equation plus s times the fifth
equation of Eq. (4.2.23), where we use t5 — st = 0 this time. We conclude by considering
s times the fifth equation minus ¢ times the fourth equation of Eq. (4.2.23). O

4.2.8 Cayley fibration

In the previous section we found the condition that makes N, SU(2)-invariant submanifold,
a Cayley submanifold. Explicitly, it consists of a system of ODEs that is completely

integrable; these solutions will give us the desired fibration.

Proposition 4.2.18. Let N be an SU(2)-invariant submanifold as described at the begin-
ning of Section 4.2.7. Then, N is Cayley in U, defined in Section 4.2.4, if and only if the
following quantities are constant:

st

mH(a%

B, 0, ;, F :=2sin®? acos'/? ast + 5e

where H(a) is the primitive function of h(a) := (cos asin a)3/2.

Proof. The condition on § and ¢ follows immediately from Corollary 4.2.17. Taking the

derivative in 7 of s/t, we see that

-5 () -

which is equivalent to the second equation in Corollary 4.2.17, as t > 0. Analogously, one
can see that the derivative with respect to 7 of F' is equivalent to the last equation of

Corollary 4.2.17 if we assume that s/t is constant. O

Setting
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Figure 4.1: Level sets of F' in the generic and in the conical case

the preserved quantities transform to:
5, 0, v, F = 2sin®/? a cos'/? a(v? + 1)u + 5cvH (),

where we multiplied F' by the constant (v? + 1). Observe that this is an admissible
transformation from s, ¢ € (0, 00) tou,v € (0,00). Moreover, fixed /3, d, v, we can represent
the SU(2)-invariant Cayley submanifolds as the level sets of F' reckoned as a R-valued
function of o and u. An easy analysis of F' shows that these level sets can be represented
as in Fig. 4.1. The dashed lines in the two graphs correspond to the curves formed by the
u-minimums of each level set and to the two vertical lines: o = arccos(1/4/6). For ¢ = 0,

these coincide, while in the generic case the locus of the u-minimum is:

Q = arccos u(v?+ 1)
B 6u(v?+1) +5cv |’

which is only asymptotic to a = arccos(1/4/6) for u — oo.

The conical version. We first consider the easier case, i.e. when ¢ = 0. It is clear
from the graph that the SU(2)-invariant Cayleys passing through U are contained in U,
have topology S® x R and are smooth. Moreover, we can construct a Cayley fibration
on the chart & with base an open subset of R*. To do so, we associate to each point of
U the value of (3, J, s/t and F of the Cayley passing through that point. This SU(2)-
invariant fibration naturally extends to the whole M, via continuity. Using Table 4.1
and Theorem 2.3.8, we can describe the extension precisely. Indeed, when o = 7/2,

the fibres of mgs are SU(2)-invariant Cayley submanifolds; when a # /2 and s = 0 or
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t = 0, the suitable Cayley submanifolds constructed by Karigiannis and Min-Oo [50] are
SU(2)-invariant; finally, when oo = 0 and (s,t) # 0, the fibres are given by an extension
of [48]. We recall that the Karigiannis-Min-Oo Cayley submanifolds are constructed as
vector subbundles of $_(S%) over a minimal surface of S*. The topology of these Cayley
submanifolds that are not contained in ¢ is R* \ {0} in the first case and R x S? in the
remaining ones. Observe that this fibration does not admit singular or intersecting fibres.

The smooth version. Now, we consider the generic case, i.e. when ¢ > 0. Dif-
ferently from the cone, the graph of the level sets of F' shows that the SU(2)-invariant
Cayley submanifolds passing through &/ do not remain contained in it, and they admit
three different topologies in the extension. The red, black and blue lines correspond to
submanifolds with topology R x 53, R* and O¢pi(—1), respectively. We define an SU(2)-
invariant Cayley fibration on U that extends to the whole M exactly as above. If we fix
a value of F' corresponding to a Cayley of topology Ocpi(—1), then, for every 4, v, all the
different Cayleys will intersect in a CP! C S*, where S? is the zero section of §_(S%).

The parametrizing space. Using Fig. 4.1, we can study the parametrizing space
B of the Cayley fibrations we have just described. We will only deal with the smooth
version, as the conical case is going to be completely analogous.

Ignoring [ for a moment, it is immediate to see that, if we restrict our attention to the
fibres that are topologically Ocpi(—1) and the ones corresponding to the black line, the
parametrizing space is homeomorphic to S? x [0, 1]. The remaining fibres are parametrized
by B3(1), open unit ball of R3. As we removed the zero section of $ (S%), it is clear that

we can glue these partial parametrizations together to obtain B3(2). Now, /3 gives a circle
action on B3—(2) that vanishes on its boundary. We conclude that the parametrizing space
B of the smooth Cayley fibration is S*. Indeed, this is essentially the same way to describe
S* as we did in Section 4.2.1.

The smoothness of the fibres (the asymptotic analysis as » — 0). In this
subsection, we study the smoothness of the fibres. Observe that this property is obviously
satisfied as long as they are contained in the chart /. Hence, the Cayleys of topology
S3 x R are smooth, and we only need to check the remaining ones in the points where they
meet the zero section, i.e., when the SU(2) group action degenerates. To this purpose, we
carry out an asymptotic analysis.

Let By, vp, 09 and Fy be the constants determining a Cayley fibre N. By the explicit

formula for F', we see that N is given by:

Fy — 5evgH ()

2sin®? o cos/2 a(vg + 1)

u =

70



L T
v

Figure 4.2: Approximation of a Cayley at u = 0 when «g € (0,7/2)

We first check the smoothness of the fibres that meet the zero section (u = 0) at some
ag € (0,7/2), i.e., the ones of topology Ocpi(—1). For this purpose, if we expand near
o, and we obtain the linear approximation of N at that point. Explicitly, this is the

SU(2)-invariant 4-dimensional submanifold 3 characterized by the equation

dcug
2 tan ap(v3 + 1

u= (o — ),
)
and where v, d, 5 are constantly equal to vy, dg, 5.
Now, we want to study the asymptotic behaviour of the metric g. when restricted to
Y, and then, we let « tends to ag from the left. To do so, it is convenient to compute the

following identities using the definition of u := st and v := s/t:

1 1 Ju
= st — %\/;dv,
ds = ﬁalu + Vi dv,
2Vu 2\ (4.2.24)

1
ds? = ——du? + X w? + —dudv,

4 4v 2
1 U 1
2 2 2
dt* = —4uvdu + —4v3dv —2v2dudv.
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The metric g., in the coframe {0y, 09, 03, da, df, du, dv,d§}, then can be rewritten as:
u 3/5
ge =5 (c +—(1+ 112)) (da® + sin® adB® + cos® a(o3 + 03))
v
=2/5 (1 1
+4 (c + 21+ v2)) (—(1 +0?)du? + — (1 + v})dv? + — (v* — 1)dudv
v

duv 493 202

cos?

u 2 2, U 2y 2 COSau 2
+v(1+v) 1 dp +4U(1+v)01 5 U(1+v)dﬁo—1
u sin® a u(l —v?) . u
+ ;(1 + v?) 1 (05 +03) + Td501 + usin addos + @(1 + v?)dé?
1— 2
+ sin agdv@ — ud —v )cosad&w)?
v 2v

(4.2.25)
where we used Eq. (4.2.24) and Lemma 4.2.7. Now, if we restrict Eq. (4.2.25) to 3, and

we let o tend to ap from the left, we get:

—2/5

d 2
gC|N ~ (1+v3) <% + uaf) + 535 cos? ag(o? + 02)

Vo
o2
~dr? + r2zl + 55 cos? ao(os + 03),
where

14?2
r= 0

24/,

As the length of oy is 47, we deduce that the metric g, extends smoothly to the CP! = §?

002/

contained in the zero section. This two-dimensional sphere corresponds to the base of the
bundle Ocp1(—1).

Finally, we check the smoothness of the fibres meeting the zero section at ag = /2,
i.e., the ones with topology R*. Expanding for a — 7/27, we immediately see that the
first order is not enough and we need to pass to second order. Explicitly, this is the

SU(2)-invariant 4-dimensional submanifold ¥ of equation:
u=Ala —7/2)?

where A := cv(1 +v?)~! is the constant depending on c¢,v determined by the expansion.
As above, the remaining parameters v, d, 8 are constantly equal to vy, dg, 5o. If we restrict
g as defined in Eq. (4.2.25) to X, and we let a tend to 7/2, then, we obtain:

1+ 02

gc}N ~ 503/5(a —7/2)? (05 + a%) + Ac2/5 < ”

) (o= 7/2%(0% + 03 + 02)
+ <5c3/5 + 4A02/51+702> da?
v

~ (o — ag)? (o7 + 6(03 + 03)) + 9¢¥°da?,
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Figure 4.3: Approximation of a Cayley at u = 0 when oy = /2

where we also used the expansion of cosa around 7/2 and the explicit value of A. We
conclude that NV is not smooth when it meets the zero section, and it develops an asymp-

totically conical singularity at that point.
Remark 4.2.19. The singularity is asymptotic to the Lawson-Osserman cone [55].

The main theorems We collect all these results in the following theorems. Observe

that we are using the notion of Cayley fibration given in Definition 3.1.5.

Theorem 4.2.20 (T. [71]; Generic case). Let (M, ®.) be the Bryant-Salamon manifold
constructed over the round sphere S* for some ¢ > 0, and let SU(2) act on M as in
Section 4.2.3. Then, M admits an SU(2)-invariant Cayley fibration parametrized by B =
S*. The fibres are topologically Ocpr(—1), S® x R and R*. Apart from the non-vertical
fibres of topology R*, all the others are smooth. The singular fibres of the Cayley fibration
have a conically singular point and are parametrized by (B°)¢ = S% x St (B,6,v in our
description). Moreover, at each point of the zero section S* C $_(S*), infinitely many

Cayley fibres intersect.

Theorem 4.2.21 (T. [71]; Conical case). Let (Mg, ®g) be the conical Bryant-Salamon
manifold constructed over the round sphere S*, and let SU(2) act on My as in Sec-
tion 4.2.3. Then, My admits an SU(2)-invariant Cayley fibration parametrized by B = S*.
The fibres are topologically S® xR and are all smooth. Moreover, as these do not intersect,
the SU(2)-invariant Cayley fibration is a fibration in the usual differential geometric sense

with fibres Cayley submanifolds.

Remark 4.2.22. 1t is interesting to observe that, in the generic case, the family of singular

R*s separates the fibres of topology S x R from the ones of topology Ocpi(—1).

Remark 4.2.23. Similarly to [49, Subsection 5.11.1], one can blow-up at the north pole
and argue that in the limit the Cayley fibration splits into the product of a line R and
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(a) Level sets of v; with v =1 (b) Level sets of vy with v =1

Figure 4.4: Level sets of the multi-moment map in the generic and conical case

of an SU(2)-invariant coassociative fibration on R”. By the uniqueness of the SU(2)-
invariant coassociative fibrations of R, we deduce that the latter is the Harvey and

Lawson coassociative fibration |37, Section IV.3| up to a reparametrization.

Remark 4.2.24. From the computations that we have carried out, it is easy to give an

explicit formula for the multi-moment map v, associated to this action. Indeed, this is:
1 25
ve =5(c + 8% + t3)/° ((s2 + %) cos® a — 6(32 + 1% — 50)) - FCG/S c>0.

Obviously, the range of v, is the whole R. Under the usual transformation u = st and

v = s/t, the multi-moment map becomes:

1+ 02\ [ u(l 402 1+ 02 2
6 v v v 6

We draw the level sets of v, in Figure Fig. 4.4.

The black lines correspond to the level set relative to zero, the red lines correspond to
negative values, while the blue lines correspond to the positive ones.

Differently from the conical case, the 0-level set of v. for ¢ > 0 does not coincide with
the locus of u-minimum of each level set of F'. Moreover, for every ¢ > 0, it does not even

coincide with the set of SU(2)-orbits of minimum volume in each fibre.

Asymptotic geometry as r — oo. Inspecting the geometry of the Cayley fibration
(see Fig. 4.1), we deduce that there are two asymptotic behaviours for the fibres: one for

a ~ 0 and one for o ~ 7/2. In both cases, as u — oo, the tangent space of the Cayley
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fibre N tends to be spanned by 0,,0:,02,05. We can use the formula for the metric
(Eq. (4.2.25)) to obtain, for o ~ 0:

1+ 2 3/5 - 1+ 02 —-2/5 1+ 02 du?
gc‘NNE)( ) WPP(of +o2) +uP | —— — + uo}
v v v U

1+02\*?
= ( » > (u3/5(5(0§ +03) +01) + u_7/5du2)
9 ,(0?+5(03 +03))
g4 2,2l 2 3
T 4 ’

and, for a ~ 7/2:

1 +’U2 3/5
gc|N ~ ( ) (u3/5(0f +05+03) + u‘7/5du2)
v

9 ,(0?+ 03+ 03)

—d 2 2
T 1 ’
where, in both cases,
3/10
. 10 (1 +0° S0
3 v

When o ~ /2, the link S? is endowed with the round metric, while, when a ~ 0, the

round sphere is squashed by a factor 1/5.

Remark 4.2.25. Observe that 1/5 is also the squashing factor on the round metric of S”
that makes the space homogeneous, non-round and Einstein. It is well-known that there

are no other metrics satisfying these properties |73].

4.3 Cayley fibration invariant under the lift of the Sp(1)x
[d;-action on S*

Let M := $ (S*) and My := RT x S7 be endowed with the torsion-free Spin(7)-structures
®. constructed by Bryant and Salamon that we described in Section 2.3.3. On each
Spin(7) manifold, we construct the Cayley Fibration which is invariant under the lift to
M (or My) of the standard (left multiplication) Sp(1) x Id;-action on S* C H & R.

Remark 4.3.1. The exact same computations will work for the Sp(1) x Id;-action given
by right multiplication of the quaternionic conjugate. In this case, the role of the north

and of the south pole will be interchanged.
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4.3.1 Choice of coframe on S*

As in Section 4.2, we choose an adapted orthonormal coframe on S* which is compatible
with the symmetries we will impose.

Consider R as the sum of a 4-dimensional space P = H and its orthogonal complement
Pt =~ R. With respect to this splitting, we can write the 4-dimensional unit sphere in

the following fashion:
St = {(x,y) € Pa P+ x|+ y|* = 1}.

Now, for all (x,y) € S* there exists a unique o € [—7/2, 7/2| such that

X = cos auU, Yy = sin a,

for some u € S®. Note that u is uniquely determined when a # +7/2. Essentially, we
are writing S* as a 1-parameter family of S®s that are collapsing to a point on each end
of the parametrization.

Let {01, 02,03} be the standard left-invariant orthonormal frame on S = Sp(1). Con-

sidering this frame in the description of S* above, we deduce that

0 O o
f() = aom fl = 1 f2 = 2 L 3

3=
cosa’ cosa’ cosa’

is an oriented orthonormal frame of S*\ {a = +m/2}. The dual coframe is:
by := do; by :=cosaoy; by = cosaosy;  bg := cosaos, (4.3.1)

where {0;}2_, is the dual coframe of {9;}?_; in S3, which is well-known to satisfy:

o1 0'2/\0'3
d () =2 03 A 01 . (432)
03 0'1/\0'2

We deduce that the round metric on the unit sphere S* can be written as:
gss = da* + cos® aggs,
and the volume form is:
volgs = cos® ada A volgs,
where ggs = 07 + 03 + 03 and volgs = 01 A 03 A 03.
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4.3.2 Horizontal and the vertical space

Exactly as in Section 4.2.2 we can compute the connection 1-forms p; for ¢ = 1,2,3
with respect to the coframe we have constructed. Indeed, a straightforward computation
involving Eq. (2.3.1), Eq. (4.3.1) and Eq. (4.3.2) implies that p; = lo; for all i = 1,2, 3,
where
L sinaw — 1
2
Hence, we can deduce from Eq. (2.3.2) that the vertical 1-forms in these coordinates

are:

& = dag + l(a101 + a0 + a303), & = day + l(—agoy — azo3 + az02), (13.3)

&2 = dCLQ + l(—a,()O'Q + a103 — CL30'1), 53 = d(l3 + l<—a00'3 — 102 + CLQO'l).

4.3.3 SU(2)-action

Given the splitting of R® into P = H and its orthogonal complement P+, we can consider
SU(2) = Sp(1) acting via left multiplication on P and trivially on Pt. Equivalently, we
are considering Sp(1) = Sp(P) x Idp:r C SO(5). Being a subgroup of SO(5), the action
descends to the unit sphere S*.

We first consider o # —m /2, where we trivialize S* \ {south pole} using homogeneous
quaternionic coordinates on HP' = S%. In this chart, diffeomorphic to H, the action is
given by standard left multiplication.

We extend the action on S* to the tangent bundle of S* via the differential. In this
trivialization, H x Hl, the action is given by left-multiplication on both factors. Hence, if
we pick the trivialization of Pyo) induced by {1,4, j, k}, the action of p € Sp(1) maps
the element (z,Idsow)) € H x SO(4) to (p - x,p), where

Po —pP1 —P2 —D3
Pr Po —P3 D2
P2 P3 Po —P
b3 —P2 D1 Po

By the simply-connectedness of Sp(1) = Spin(3), we can lift the action to the spin
structure Pepiny of S*. Using a similar diagram to (Eq. (4.2.4)) and the fact that the
lift of p is (p,Idsp(1)) € Sp(1) x Sp(1), we can show that in the trivialization of Pspin(a),
H x Sp(1) x Sp(1), the element (x, (Idsy(1y, Idsp(1y)) is mapped to (p - z, (p, Idsp)))-

As in Section 4.2, this passes to the quotient space: $ (S?%), and, in the induced

3
Il

trivialization, H x H, the action of Sp(1) is only given by left multiplication on the first
factor by definition of p_.
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A similar argument works for the other chart of HIP!. However, the left multiplication
becomes right multiplication of the conjugate, and the lift of the new p is (Idgy), p). It
follows that Sp(1) acts on the fibre over the south pole as it acts on H.

In particular, we proved the following lemma.

Lemma 4.3.2. The orbits of the SU(2)-action on $_(S*) are given in Table 4.2.

«Q a | Orbit
# x5 S3
=—5|#0 S3
= —3 | =0 | Point

= % Point

Table 4.2: Spin(3) Orbits

When o # +7/2 we can use the orthonormal frame of Section 4.3.1. Obviously, it is
invariant under the action. Hence, in the induced trivialization of § (5%), Sp(1) acts only
on the component of the basis. In particular, it follows that {oy, 09,03} is a coframe on
the orbits of the SU(2)-action, and, {0y, 0, J3} is the relative frame. Observe that we are

working on the coframe {da, 01, 09, 03, day, day, das, das}.

4.3.4 Choice of frame and the Spin(7) geometry in the adapted
coordinates

Since the considered SU(2)-action only moves the base of the vector bundle $ (S*) in
the trivialization of Section 4.3.1, it is natural to use: {da,01,02,03,&0,&1,82,&3}. The

metrics g. and the Cayley forms ®. admit a nice formula with respect to this coframe.
Recall that we are working on the chart ¢ := $ (5*)\ {a = £7/2}.

Proposition 4.3.3. Given ¢ > 0, the Riemannian metric g., in the coframe considered

in this subsection, satisfies:

ge = 5(c+ 177 (da® + cos>a (0] + 05 +03)) +4(c+ 1) (E+E+ &+ &),
(4.3.4)

where r* = af + af + a3 + a3.
Given ¢ > 0, the Cayley form ®., in the coframe considered in this subsection, satisfies:
D, =16(c + 1) N EL A E N s+ 25(c 4 12)8/5 cos® ada A oy A oy A 0
1)t ’ (4.3.5)
+20(c 4 r*)? cos Z(fo NE— & NE) N (da N oy —cosaoj N oy) |,
i=1

where r* = af + af + a3 + a3.
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Proof. 1t follows immediately from Eq. (2.3.3), Eq. (2.3.4) and the choice of the coframe.
U

If we denote by {eq, €1, €2, €3, €., €¢, , €¢,, €¢, } the frame dual to {da, 01, 09, 03, &0, &1, €2, &3}

it is straightforward to relate these vectors to 0., 01, 9, 03, Ougy Oay s Oays Ous-

Lemma 4.3.4. The dual frame {eq, €1, €2, €3, €y, €¢,, €¢,, €, } Satisfies:

€a = Oa;

e1 =0 + 1 (—a104, + 904, + 304, — 420,,) ;
ey = O + 1 (—a20,, — 4304, + 4004, + 0104;) ;
e3 = 03 + 1 (—a30,, + 4204, — 0104y, + 4004y) ;

e, =0, Vi=0,1,2,3,
where | 1s as defined in Section 4.53.2.

Proof. 1t is straightforward from the definition of dual frame and Eq. (4.3.3). O

4.3.5 Cayley condition

Analogously to the case carried out in Section 4.2, the generic orbits of the considered
SU(2)-action are 3-dimensional (see Lemma 4.3.2). Hence, it is sensible to look for invari-
ant Cayley submanifolds. To this purpose, we assume that the submanifold /N consists of
a l-parameter family of 3-dimensional SU(2)-orbits in M. In particular, the coordinates
that do not describe the orbits, i.e. ag, a1, as, az and «, need to be functions of a parameter

7. This means that we can write:
N ={((cosa(r)u,sina(r)), (ag(T),a1(7),as(7),a3(7))) : |u| = 1,7 € (—€,€)}.  (4.3.6)

The tangent space is spanned by {0, s, 03, &0, + Z?:o @;0,, }, where the dots denote the
derivatives with respect to 7. The condition under which N is Cayley becomes a system

of ODEs.

Proposition 4.3.5. Let N be an SU(2)-invariant submanifold as described at the begin-
ning of this subsection. Then, N is Cayley in the chart U if and only if the following
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system of ODFEs is satisfied:
’a0a1 — dlao — d2a3 + dgag =0
aoag + d1a3 — dgao — dgal =0
doag — a1a2 + agal — dgao =0
feos®a + 31%gr®)ag — I(I%gr* — 3f cos® a)agdv

{ cosa (
—I(I*gr* — 3f cos® a
(

2

cos a( — f cos® o + 31%gr

Cbld

(— ) 0
( Jax ) 0
cos a(—f cos® o + 31%gr*)ay — 1(I2gr? — 3f cos® a)axck = 0
( )a ) 0

2

[ cosa(—f cos® a + 31%gr#)as — I(I*gr* — 3f cos® a)asd

where 2 = a2 +a? + a2+ a2, | = (sina — 1)/2, f =5(c+ 723 and g = 4(c + r?)~2/5.

Proof. We first write the tangent space of N, which is spanned by {01, 0s, 05, &0, +
S @0}, in terms of the frame {e,, €1, €9, €3, €y, €¢, , €y, €, +- This can be easily done
using Lemma 4.3.4. Through a long computation analogous to the one carried out in

Section 4.2.7.1, we can apply Proposition 2.3.9 to this case, and we obtain the system of
ODEs. O

Remark 4.3.6. Tt is interesting to point out that, exactly as in the SO(3) x Ids case (see
Lemma 4.2.16), the projection 77 of Proposition 2.3.9 will just be the identity in the proof
of Proposition 4.3.5.

4.3.6 Cayley fibration

In the previous section we found the condition that makes N, SU(2)-invariant submanifold,
Cayley. This consists of a system of ODEs, which will characterize the desired Cayley
fibration.

Harvey and Lawson local existence and uniqueness theorem implies that any SU(2)-
invariant Cayley can meet the zero section only when o = +7/2, i.e. outside of U.
Otherwise, the zero section of $_(S*), which is Cayley, would intersect such an N in a
3-dimensional submanifold, contradicting Harvey and Lawson theorem. It follows that
the initial value of one of the a;s is different from zero. We take ay(0) # 0, as the other
cases will follow similarly. Now, it is straightforward to notice that:

a@ w0 a0
CLO(O) 0, 2 CLO(O) 0, 3 CL()(O) 05

solves the first 3 equations of the system given in Proposition 4.3.5. Moreover, it also

(4.3.7)

ay =

reduces the remaining equations to the ODE:

cos a(—f cos® o + 31%gr*)ag — 1(I2gr? — 3f cos® a)agcv = 0,
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where, as usual, 72 = a2 + a? + a2 + a2, | = (sina —1)/2, f = 5(c+ 7?37 and g =
4(c+1r?)72/5. As Eq. (4.3.7) implies that ag = p~'r, where p is the positive real number
satisfying p*> = 1 4+ 327, (a:(0)/a0(0))?, we can rewrite the previous ODE as:

cos a(—f cos® a + 31%gr?)i — 1(I?gr? — 3f cos® a)ra = 0. (4.3.8)

Remark 4.3.7. Tt is easy to verify that Eq. (4.3.8) is not in exact form. Hence, it cannot
be easily integrated. It is a non-trivial open task to verify whether, possibly up to change

of coordinates, Eq. (4.3.8) can be integrated in closed form.

In order to understand the SU(2)-invariant Cayley fibrations, we analyse the ODE
given in Eq. (4.3.8). First, we deduce the sign of f; := cos a(— f cos? a+ 31?gr?). If we let

2r? + 5c>

Oéc(’f') = arcsin <—m

it easy to verify that f; is positive on the left of «. for (o, r) € (—7/2,7/2) x Rt and
negative otherwise. Moreover, f; vanishes along the 3 curves a.,a = +m/2; there, f;
changes sign. Note that o — arcsin(—1/4) as r — oc.

Now, we consider fo := [(I2gr? — 3f cos® a)r. Letting

1612 + 15¢

14r% + 15
Be(r) := arcsin ( Tt C) :

then, f, is positive on the right of 5. for (a,r) € (—7/2,7/2) x R*, and it is negative
otherwise. Obviously, fo vanishes along the curve [, and the vertical line o = 7/2. Note
that . — arcsin(7/8) as r — co. The last key observation is that f,/f; tends to zero as
a tends to /2.

Putting what said so far together, and observing that [.(r) < a.(r) for all » > 0, we
can draw the flow lines for Eq. (4.3.8) (see Fig. 4.5). Finally, we can use these to deduce
the form of the solutions from standard arguments (see Fig. 4.6).

The conical version. We consider the easier conical case first. From a topological
point of view, it is obvious that the red and green Cayleys of Fig. 4.6 (B) are homeomorphic
to S3xR. As the the group action becomes trivial on @ = 7/2, the topology of the fibres in
blue cannot be recovered from the picture. However, it will be clear from the asymptotic
analysis that these are smooth topological R*s. As a consequence, we have constructed a
Cayley fibration on the chart ¢ N My, which extends to the whole My by continuity (i.e.
we complete the Cayleys in blue and we add the whole my-fibre at & = —x/2). On M,
the Cayley fibration remains a fibration in the classical sense. A reasoning similar to the

one of Section 4.2 shows that the parametrizing space B of the Cayley fibration is R*.
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Figure 4.5: Flow lines for Eq. (4.3.8).

(b) conical case

(a) generic case

Figure 4.6: Solutions of Eq. (4.3.8).
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The smooth version. Now, we deal with the generic case ¢ > 0. As above, the
topology of the red Cayleys of Fig. 4.6 (A) is S? x R; the blue ones have topology R*.
In the latter, we use the same asymptotic analysis argument of the conical case. Finally,
the submanifolds in green are smooth topological R%s. As usual, we extend the Cayley
fibration on U to the whole M by continuity (i.e. we add the whole 7 -fibre over o = —7/2,
we complete the Cayleys in blue and green, and we add the zero section S?*). Observe
that the zero section, the 7.-fibre over « = —7/2 and the green Cayleys all intersect in a
point p. It follows that the M’ given in Definition 3.1.5 is equal to M \ {p}. Once again,
a reasoning similar to the one of Section 4.2 shows that the parametrizing space B of the
Cayley fibration is S*.

The smoothness of the fibres (the asymptotic analysis as r — rg > 0) In
this subsection, we study the smoothness of the fibres. This is trivial as long as the
submanifolds are contained in U/; hence, the Cayleys of topology S* x R are smooth, and
we only need to check the others at the points where they meet 0. To this purpose, we
carry out a asymptotic analysis similar to the one of Section 4.2.

As a first step, we restrict the metric g. to N. Combining Eq. (4.3.4) together with
Eq. (4.3.7) and its consequence ag = p~'r for p positive real number satisfying p? =

1+ Zf’zl(ai(O)/ao(O))Q, we can write the restriction as follows:

gC|N =(5(c+ r2)3/5 cos® a + 4(c + 7‘2)_2/5127“2) (07 + 03+ 03)

(4.3.9)
+4(c+ 1) 2Pdr? +-5(c + r?)*Pda?,

where o and r are related by the differential equation: Eq. (4.3.8) and, as usual, | =
(sina —1)/2.

(r = ro). Recall that fo/f; — 0 as @ — 7/2. Therefore, the Cayleys around a = 7/2
are asymptotic to the horizontal line o = r( for some constant ro > 0. By Eq. (4.3.9), the

metric in this first order linear approximation becomes:
gC‘N ~ 5(c+12)3/5 (da—7/2)* + (a — 7/2)* (0] + 03+ 73)) -

In this way, we have proved that near a = 7/2 every Cayley we have constructed is
smooth. Moreover, we can also deduce that the blue Cayleys of Figure Fig. 4.6 are
topologically Rs.

(r — 0). Finally, we need to check whether the remaining Cayleys of topology R*
are smooth or not. In this situation we can approximate them near « = —7/2 with the

submanifold associated to the line:



where A is some positive constant (as the lines corresponding to the Cayleys live between

a. and f.). The metric in the linear approximation is asymptotic to:
el ~ ¢ 25 (5cA + 4) (dr® + 1% (o + 05 +03))

hence, we conclude that these submanifolds are smooth as well.
The main theorems Putting all these results together we obtain the following the-

orems.

Theorem 4.3.8 (T. [71]; Generic case). Let (M, ®.) be the Bryant-Salamon manifold
constructed over the round sphere S* for some ¢ > 0, and let SU(2) act on M as in
Section 4.3.3. Then, M admits an SU(2)-invariant Cayley fibration parametrized by B =
S4. The fibres are topologically S® x R, S* and R*. All the Cayleys are smooth. There
1s only one point where multiple fibres intersect. This point lies in the zero section of

8 (S*), and there are S* LI {two points} Cayleys passing through it.

Theorem 4.3.9 (T. [71]; Conical case). Let (Mo, ®g) be the conical Bryant-Salamon man-
ifold constructed over the round sphere S*, and let SU(2) act on My as in Section 4.3.3.
Then, My admits an SU(2)-invariant Cayley fibration parametrized by B = R*. The fibres
are topologically S® x R or R* and are all smooth. Moreover, as these do not intersect,
the SU(2)-invariant Cayley fibration is a fibration in the usual differential geometric sense

with fibres Cayley submanifolds.
Remark 4.3.10. Blowing-up at the north pole, it is easy to see that the Cayley fibration
becomes trivial in the limit.

Remark 4.3.11. As in the previous section, we are able to compute the multi-moment

maps relative to this action explicitly. Indeed, this is:

) 25
Vv, = 6(T2 —5¢)(c+ 1) (sina — 1) — 7(0 +1r2)8/5 cos? a(sina — 1).

In order to provide an idea on how the multi-moment maps behave, we draw the level

sets of vy and vy (see Figure Fig. 4.7).
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Figure 4.7: Level sets of the multi-moment map in the generic and conical case

Asymptotic geometry as r — oco. The first observation we need to make is that
there are only two asymptotic behaviours for the Cayleys constructed in Theorem 4.3.8

and in Theorem Theorem 4.3.9: one corresponding to o« ~ —7/2 and the other to o ~
arcsin(—1/4). In both cases, we can use Eq. (4.3.9) to obtain the asymptotic cone, which

18:

9e| v o5

for « ~ /2, and it is

2
gc|N ds” + 16

for o ~ arcsin(—1/4), where s := (10/3)r%/5.

9
~ds? + —5*(0? + 02 + 02),

9
—SQ(Jf + Jg + U§),

4.4 Cayley fibration invariant under the lift of the SO(3)

irreducible action on S*

Differently from the other actions, where it was possible to describe the invariant fibrations
explicitly, this is not the case when SO(3) acts irreducibly on S*. Indeed, irreducibility
implies that there is no simple frame on S* compatible with the group action. Hence,
the Cayley condition, and consequently the associated ODEs, will become extremely

complicated.
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Moreover, the analogous action on the flat Spin(7) space and on the Bryant-Salamon
Gy manifold A*(7*S*) was studied by Lotay [58, Subsection 5.3.3] and Kawai [51], re-
spectively. In both cases, the defining ODEs for Cayley submanifolds and coassociative

submanifolds were too complicated to be explicitly solved.
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Chapter 5

Calibrated geometry in Go manifolds
with T? x SU(2)-symmetry

This chapter, based on the joint work with Aslan [6], is focused on Gy manifolds admitting
a T? x SU(2)-action, which we assume to be of cohomogeneity-two. In particular, we
provide a local characterization of these manifolds, that reduces the torsion-free condition
to two nested systems of ODEs, and we consider the following natural families of calibrated
submanifolds in them: T2 xIdgy(2)-invariant associative submanifolds, T? x S'-invariant
coassociative submanifolds for some S' < SU(2) and Idy2 x SU(2)-invariant coassociative
submanifolds.

As in Chapter 4, the invariance reduces the problem of findings such objects into a
system of ODEs in the appropriate orbit space. However, since we are working with
an enhanced symmetry, we can project the solutions of such ODEs to the quotient of
the whole group, T? x SU(2). It turns out that, on this 2-dimensional quotient, the T2-
invariant associatives and the T*-invariant coassociatives correspond to the level sets of
some combination of the associated multi-moment maps, which act as local coordinates
for the surface. The SU(2)-invariant coassociatives, when they exist, correspond to the
integral curves of a nowhere vanishing vector field, once again induced from a multi-
moment map.

Moreover, we show that T?-invariant associatives and SU(2)-invariant coassociatives
are smooth, while the T*-invariant coassociatives develop singularities with one tangent
cone diffeomorphic to a line times the Harvey—Lawson cone (see [37]).

We apply our discussion to the flat space, to the manifolds constructed by Foscolo—
Haskins-Nordstrém in [32] and on the Bryant-Salamon manifolds of topology S x R%.

In particular, we obtain new examples of T*-invariant associatives in the latter two cases.

87



5.1 G, manifolds with T? x SU(2)-symmetry

In this section, we consider a Gy manifold (M, ¢) with a structure-preserving T2 x SU(2)-

action of cohomogeneity two, i.e. the maximal dimension achieved by the orbits is 5.

5.1.1 T? x SU(2)-symmetry

To understand the action of T? x SU(2) on M, let T' be the kernel of the homomorphism
T? x SU(2) — Aut(M), which is discrete by assumption. Once we rewrite it as I' =
{(ai,b;) € T x SU(2) : i € I}, we define 'y := {a € T*: (a,1dsy2)) € I'} and I'y := {b €
SU(2) : (Idp,b) € T'}, which are subgroups of T? and SU(2) respectively.

Consider the T? action on M given by T? xIdgy(2) C T? xSU(2). Since

Iy x Idsy) = (T xIdsy@) N T,

we see that the action of T? /T is effective, and, as T? /I'; is diffeomorphic to T?, we can
assume, without loss of generality, that I'y is trivial and that the action of T? 22 T? xIdgu(2)
is effective. We denote by S the singular set of this action, i.e. the complement of the
principal set with respect to this action.

Analogously, we have an SU(2)-action on M given by SU(2) = Idp x SU(2) C
T? x SU(2), which induces an effective action of SU(2)/I'y. The singular set of this action
is denoted by S.

Remark 5.1.1. Observe that I' does not need to be equal to I'y x I'y. For instance, if
['={£(1,1)}, then, I'; and 'y are trivial.

Now, we show that I is in the center of T? x SU(2): Z(T? x SU(2)) = T? x{=£1}.

Lemma 5.1.2. Let © € M be such that the stabilizer (T* x SU(2)), is discrete. Then,
the stabilizer is a subgroup of the center Z(T? x SU(2)).

Proof. We show that the adjoint representation of (T* x SU(2)), on t @ su(2) is trivial,
which implies the statement by naturality of the exponential map.

Let N = v, be the normal space at x of the T? x SU(2)-orbit, whose tangent space is
identified with t* @ su(2) in the usual manner. Then, the representation of (T? x SU(2)),
on T, M splits as

T.M =t ®su(2) ® N, (5.1.1)

and coincides with the adjoint representation on the t* @ su(2) part. Being abelian, the

action on 2 is trivial and the same holds for the cross product of the t2-generators, which
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spans a linear subspace N; of N by Eq. (5.1.6). Note that we used that the action of
(T? x SU(2)),. preserves the Gy-structure. Denote by N the orthogonal complement of
Ny in N, which is invariant under the action. Being an isometry, every element g €
(T? x SU(2)),. acts on Ny by multiplication of \,, where \, € {—1,+1}.

Finally, we show that )\, cannot be —1. In order to do so, we consider the map
(@ N;) ® Ny — su(2) which is the composition of the cross product and the projection
onto the su(2) component in the splitting given by Eq. (5.1.1). Since t* & N; is an
associative subspace, this map is an isomorphism of representations. Hence, g acts on
su(2) by multiplication of A\,. We conclude the proof because there is no element in

T? x SU(2) whose adjoint action on su(2) is multiplication by —1. O

Corollary 5.1.3. Since T? x SU(2) acts with cohomogeneity two, T is in the centre of
T? x SU(2). Hence, SU(2)/Ty is either SU(2) or SO(3).

Corollary 5.1.4. The principal stabilizer of (T* x SU(2))/I is trivial.

Proof. As a consequence of Lemma 5.1.2; all principal stabilizer subgroups are not only
conjugate, but equal to each other. Since the action is effective after the quotient, the

principal stabilizer needs to be trivial. O

From now on, we consider the action of G := (T? x SU(2))/T" C Aut(M, ), and we
denote by Mp its principal set. This is going to greatly simplify our arguments, indeed,
the G-action is effective and with trivial principal stabilizer.

We will make use of two additional actions induced from the original T? x SU(2). Let
[y :={a;: (a;,b;) €T} and let T'y := {b; : (a;,b;) € T'}, which is either trivial or {£1} by
Corollary 5.1.3. We state the following lemma without proof.

Lemma 5.1.5. Let T? = T? x Idsy(2) acting on M. Then, there exists an induced action
of G™* :=T? /Ty on Mp/(SU(2)/Ty) which is free. In particular, Mp/(SU(2)/Ty) becomes
a principal GT -bundle over B := Mp/G. Similarly, there exists a GSV® := SU(2)/T,
action induced by SU(2) = Idp x SU(2) on Mp/T? which is free. As before, Mp/T?

becomes a principal GSY@ -bundle over B.

The various group quotient are summarised in the following diagram:

/(8U(2)/T2) \/Tj

Mp/(SU(2)/F2) /G MP/T2 :
M e A‘”z)
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5.1.2 Stratification

Applying the orbit type stratification theorem and the principal orbit type theorem to our
setting, where G = (T? x SU(2))/I" acts effectively on M, we see that M decomposes as
the union of G-orbit types, and there exists one of them which is open and dense in M. In
this subsection, we study the geometry of the G-action to understand this stratification.

To simplify our notation, we fix a point € M and denote by 7" the tangent space of
Gz at x and by N its normal space, i.e. the orthogonal complement of T in T, M.

In the discussion of the stratification, we will need the following lemma:

Lemma 5.1.6. Let T? be a mazimal torus in Go. Then, the representation of T? on R7
splits as V- Wy @ Wy & W3. Where V' is 1-dimensional and each W; is 2-dimensional.

Each of V- W; is an associative subspace.

Recall that S is the singular set of the T?-action and, as a consequence of the fol-
lowing theorem, it is also the set where the generators of the T?-component are linearly

dependent, i.e. there are no exceptional orbits (cfr. [64, Lemma 2.6]).

Theorem 5.1.7 (Aslan-T. [6]). The dimension of the stabilizer G, is not bigger than 4,

and,
o if dim(G,) =0, then, G, is trivial, i.e. there are no exceptional orbits,

o if dim(G,) =1, then, x ¢ S and G, is isomorphic to SO(2). The action of G, on
N splits as N1 @& Ny with dim(N7) = 1,dim(Ns) = 2 where G, acts trivially on Ny
and faithfully by rotations on No,

o if dim(G,) = 2, then, x € S and the identity component of G, is isomorphic to
T? and acts as a mazimal torus in U(2) on N. The G-orbit Gx is an associative

submanifold of M,

e if dim(G,) = 3, then, x ¢ S and G, is diffeomorpic to SU(2). The action of G,
on N leaves a 1-dimensional subspace Ny C N invariant and acts on the orthogonal
complement Ny via the standard embedding SU(2) — SO(4),

e if dim(G,) = 4, then, x € S and the identity component of G, is isomorphic to
U(2). The action on the normal bundle N is via the embedding

U(2) - SU®B), A (‘3 detgl_1> .
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Consequently, the singular orbit set can be decomposed into S U Sy U S5 U Sy where S; is

the set of points with i-dimensional stabilizer.

Proof. The first part of the proposition follows from the fact that the rank of t* @ su(2)
is three, while the rank of gs is two. Hence, since G, C Gy under the identification of
(T M, @,) = (R7, ), the dimension of G, cannot be equal to 5.

By the slice theorem, a neighbourhood of Gz is equivariantly diffeomorphic to a neigh-
bourhood of the zero section of G X, N. It follows that the representation of G, on N
is faithful. Indeed, every neighbourhood of the orbit Gx intersects Mp, on which G, acts
freely because of Corollary 5.1.4.

If dim(G,) = 0, then, an argument similar to the one used for Lemma 5.1.2 shows that
G, acts trivially on N. This means that G is trivial by the faithfullness of the G,-action
on N.

We now consider the case dim(G,) = 1 and z € S. This means that G, = G, N
(T* xIdgy(z))/T is not trivial and, being a subgroup of (T? xIdsy())/T’, it acts trivially
on T = g/g,. Since the cross-product restricted to any 4-dimensional subspace generates
T, M, we deduce that G, acts trivially on all of 7, M. This is a contradiction as G, < G,
and hence it has to act faithfully on N. We have shown that if dim(G,) = 1, then,
z ¢ S. So it remains to show that G, is isomorphic to S'. Since z ¢ S the intersection
of £ ® {0} C £ @ su(2) with g, is trivial. This means that g/g, splits into t*, on which
G, acts trivially, and a 2-dimensional subspace m. As before, the normal space splits
into N, @ N,, where N; is spanned by the cross product on t* and N, is its orthogonal
complement in N. So G, acts trivially on N;. To summarise, the action of G, on T, M
splits as

T.M =t ®m® N, & N,.

The action of GG, is isometric and faithful on the 2-dimensional space Ns. So, G, is either
isomorphic to SO(2) or to O(2). In the latter case, there is an element 7 of order two and
a subspace N3 C N, that is fixed by 7. The cross products of 2 @& N; & N3 generate all
of T, M so that 7 acts trivially on all of T,,M. This is impossible since the action on N
must be faithful.

When dim(G,) = 2, we first assume by contradiction that x ¢ S. Consider the Lie
algebra homomorphism % : g, — su(2) coming from the projection t* @ su(2) — su(2).
The image of 1) would be a 2-dimensional Lie subalgebra of su(2) which does not exist.
It follows that z € S and the identity component of G, is isomorphic to T?. Since the
action of the identity component of GG, splits at T'é® N, we can apply Lemma 5.1.6 to see
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that T is isomorphic to V' plus one of the W;, for convenience say Wi, and N to the sum
of Wy @ W3 and the statement follows.

We now deal with the dim(G,) = 3 case. Consider the Lie algebra homomorphism
P: g, — su(2) as above. The image of ¢ is a Lie subalgebra of su(2), hence, it is
either su(2) or a 1-dimensional subalgebra. The second case is impossible, indeed, the
condition implies t* @ {0} C g., but g, also intersects su(2) in a 1-dimensional subspace,
s0 g 2 2 ®(g,) = 3. This is a contradiction since g, is a subalgebra of go, which has
rank two. So v is surjective, which means that g, intersects t* @ {0} transversally. It
remains to show that G, is isomorphic to SU(2), which also implies that = ¢ S. As before,
G, acts trivially on g/g, = t*. The element U; x U, lies in N and spans a 1-dimensional
subspace N; on which G, acts trivially too. On the orthogonal complement N, of NV in
N the action of G, is faithful. So G, acts trivially on an associative three-plane, which
means G, is a subgroup of SU(2). Since G, is 3-dimensional, it is isomorphic to SU(2)
and the action on Nj is isomorphic to the standard action of SU(2) on C2.

Finally, we consider dim(G,) = 4. Similarly as above, we can show that 7" is the span
of U; and Us, it is 1-dimensional, and it is fixed by G,. The subgroup of G, that fixes a
1-dimensional subspace is SU(3). So, the action of G, on the 6-dimensional normal space
N defines an embedding G, — SU(3), yielding a special unitary representation of G, on
C3. We first show that, when restricted to the identity component, this representation
must be reducible. Indeed, every 4-dimensional Lie subalgebra of g is isomorphic to
u(2) = su(2) ® u(l). Since G, is compact, it suffices to show that every complex 3-
dimensional special unitary representation of SU(2) x U(1) is reducible. To see this,
denote by V) the unique k-dimensional irreducible representation of SU(2) and by W,
the representation of U(1) on C with weight m. All irreducible representations of the direct
product SU(2) x U(1) are of the form V; ® W,,,. The 3-dimensional of these, V3 ® W,,, are
not special unitary. Since the representation is faithful and special unitary, we conclude
that it must be (Vo@ W7)@® W_o, i.e. of the desired form. Moreover, the element (—1, —1)
acts trivially, so the identity component of G, must be (SU(2) x U(1))/Z, = U(2). O

Note that the third part of the theorem implies that either S = §) or GSV® = SU(2).
Corollary 5.1.8. The singular set of the T?-action is S = Sy U Sy.

The following statement follows from the slice theorem and by how G, acts on the

normal bundles in Theorem 5.1.7.

Proposition 5.1.9. Fach S; is either empty or a smooth embedded submanifold of di-

MENSION:

dim(S;) = 5, dim(S,) = 3, dim(Ss) =3, dim(S,) = 1.
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82 84

Figure 5.1: Representation of how the different S;s intersect.

Moreover, each connected component of Sy and Sy are G-orbits.

Remark 5.1.10. Note that the stratification induced by {S;} is not the one of the orbit
type stratification theorem, as there could be different orbit types of the same dimension.
However, we have seen in Proposition 5.1.9 that the tangent space of each S; is spanned
by the tangent space of the orbit and possibly U; x Us. Since the flow of U; x U, preserves
the orbit type (see Lemma 5.3.2), the orbit type is unchanged along every connected

component of each §; and, hence, we can reconstruct one stratification from the other.

5.1.3 Multi-moment maps

From now on, we assume the Gy manifold to be simply connected, so that all closed
1-forms are exact. In this setting, we can describe the components of the multi-moment

maps related to ¢ and *p in an explicit way.

Remark 5.1.11. Observe that it makes sense to consider the multi-moment maps with
respect to xp as well. Indeed, Eq. (2.2.1) implies that an action preserving ¢ will also

preserve the metric g, and the volume form vol,. Therefore, xp will also be preserved.

Let Uy, U, be the generators of the t* component, while Vi, V5, Vs are the generators

of the su(2) component. Clearly, we can choose them to satisfy:
[Ul7 Um] = 07 [Ula ‘/Z] = 07 [‘/7,7 ‘/j] = G’L’jkvlm (512)

forall im=1,2and 7,5,k =1,2,3.

The components of the multi-moment maps with respect to ¢ are defined by:
dot = o(U,Vi,-), dv:= (U, Us,-), (5.1.3)

where [ =1,2,1=1,2,3.

The components of the multi-moment maps with respect to xp are defined by:

dp; = xp(Uy,Us, Vi, +),  dn:=xp(Vi, Vo, Vi, ), (5.1.4)
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where 1 = 1, 2, 3.
As a reality check, one can show that the one-forms given on the right-hand-side are

all closed.

Lemma 5.1.12. The multi-moment maps p and 0 can be computed explicitly and, up to

additive constants, have the form:
e = —x (U1, Uz, Vi, V), 0 = —p(Up, Vi, V5) (5.1.5)

i.e., dux = xo(Uy, Uy, Vi, ) and d0, = (U, Vi, ), where (i, 4, k) is a cyclic permutation
of (1,2,3).

Proof. The proof is a straightforward application of Cartan’s formula, the identity [Lx,iy] =
ix,y) for every vector field X,Y and Eq. (5.1.2). O

Before considering the properties of the multi-moment maps, we state two classical

result that we will use throughout the paper.

Lemma 5.1.13. Let M be a smooth manifold with an SU(2) action of generators Vi, Va, V3
satisfying [Vi,Vi] = €;xVk. Then, a smooth function f: M — R3? is equivariant with
respect to the action of SU(2) on R3 wvia the double cover SU(2) — SO(3) if and only if f

satisfies:

»C\/;fj = Gijkfk-

Lemma 5.1.14. Let M be a smooth manifold with the action of a connected Lie group
G of generators Uy,...,U;. Then, a smooth function f: M — R is invariant under the
G-action if and only if f satisfies:

£Uif = 07
for every i =1,...,1.

Proposition 5.1.15. Let v, 0' := (6%, 05,6%) be as in Eq. (5.1.3), let ju := (u1, pio, 13) and
n be as in Eq. (5.1.4). Then, v is T? x SU(2)-invariant, p and 6' are T*-invariant and
SU(2)-equivariant, where SU(2) acts on R? via the double cover SU(2) — SO(3). Finally,
n is always SU(2)-invariant and also T*-invariant if the SU(2)/Ty-action has a singular

orbit. Moreover, these functions pass to the appropriate quotients.
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Proof. The T?invariance of v,y is clear from Lemma 5.1.14 equations Eq. (5.1.3) and
Eq. (5.1.4), while the SU(2)-equivariance of y and ¢' follows from Lemma 5.1.13 and:

I I
LViNj = €ijk Mk, Evﬁ- = Eijkek-

If we show that (U, Us, V;) = 0 for every i = 1,2, 3, then, v is SU(2)-invariant and €' is
T%invariant. Cartan’s formula, together with [Lx,iy] = irx,y], implies that d(p(Uy, Uy, Vi) =

0 and, hence, (U, Us, V;) is a constant ¢;. We conclude because:
0= Ly,c; = Vj(p(U,Us,V;)) = —o(U1, Uz, Vi) = —cx, (5.1.6)

where we used again Cartan’s formula and Eq. (5.1.2). Analogously, one can prove that n
is T?-invariant if the SU(2)/T's-action has a singular orbit. We conclude as 7 is obviously
SU(2)-invariant. O

Since the T? x SU(2)-action is structure preserving, and in particular, its generators
are Killing vector fields, we can obtain the following result. Recall that the Lie derivative

of a Killing vector field commutes with musical isomorphisms.

Corollary 5.1.16. Let v be as in Eq. (5.1.3), let p = (u1, po, u3) and n be as in
Eq. (5.1.4). Then, Vv = U; x Uy and V|u|*> are T? x SU(2)-invariant, while V1 is
always SU(2)-invariant and also T?-invariant if the SU(2)/T'y-action has a singular orbit.

Moreover, these vector fields pass to the appropriate quotients.

Remark 5.1.17. As an abuse of notation, we will use the same symbol for both the invariant

functions (or vector fields) in the total space and in the quotients.

We are also able to locate the zero set of the multi-moment map of p in terms of the

stratification given in Theorem 5.1.7.

Corollary 5.1.18. The zero set of p satisfies:
82U83U84 C ,ufl(O) C 81 U82U83U84.

Proof. The statement follows from Theorem 5.1.7 and and that the two-form x@(Uy, U, -, -)

does not vanish on any 3-dimensional subspace, orthogonal to U; x Us. O
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5.2 Local characterization of G, manifolds with
T? x SU(2)-symmetry

Any smooth hypersurface in a torsion-free Go manifold carries a half-flat SU(3)-structure
[22]. Moreover, If this hypersurface and its structure are real-analytic one recovers the
Go-structure locally through Hitchin’s flow [41]. In our setup, it is natural to take the
level sets of v as hypersurfaces, indeed, they inherit the T? x SU(2)-symmetry and have
U, x Uy as a normal vector field. The main result of this subsection, Theorem 5.2.9, is
to describe half-flat SU(3)-structures with cohomogeneity one T? x SU(2)-symmetry as a
solution of an ODE system.

We proceed in two steps. Firstly, in Section 5.2.1, we only assume T?-symmetry and
recall from [62] that the SU(3)-structure on the level sets of v is described as a T*-bundle
over a four manifold y, with a coherent tri-symplectic structure. Secondly, in Section 5.2.2,
we enhance the symmetry to T? x SU(2) which implies that the structure on y admits
a structure-preserving GSY@)-action. In Proposition 5.2.6, we show that coherent tri-

symplectic structures with this symmetry are the solution of an ODE system.

Remark 5.2.1. It is worth noting that Apostolov and Salamon [5] considered Go manifolds
with only T'-symmetry. Under this weaker assumption, they still reduced their problem
to a 4-manifold with an appropriate structure. In this way, they managed to construct

explicit non-complete examples of G, manifolds.

5.2.1 T?-reduction

Let (M, ) be a Gy manifold with a T? structure-preserving action and singular set S.
Associated to this action we have a multi-moment map v, defined in Eq. (5.1.3). On
M\ S, the level sets of v are hypersurfaces oriented by Vv = U; x Uy. The T?-action
passes to the level sets of v and, hence, it endows v~!(¢) with a T*-bundle structure over
v~1(t)/ T?, which inherits the following additional structure (cfr. [62]).

Definition 5.2.2. A 4-manifold y has a coherent tri-symplectic structure if it admits
three symplectic forms @, 71,7, such that 9 Aa; = 0 for i = 1,2, 59 A 7 is a volume
form of x and the matrix Q) := (Q;j)i =12 defined by 7; A 7; = Q;;50 A Tp is positive
definite.

The forms defining this structure on v~*(¢)/ T? are:
og = *SO(U17U27'7')7 [ QO<U17'7')7 0y = (p(U27'7'>7 (521)
where Uy, U, are two generators of the T?-action.
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Conversely (see [62, Theorem 6.10]), assuming real analyticity, one can locally recon-
struct a Gy manifold with T?-symmetry from a coherent tri-symplectic four manifold y,
equipped with a closed two form F' € Q?(y,R?) with integral periods and whose self-dual

part F, satisfies the orthogonality condition:
F+ - (5’1,5’2)14, (522)

for some A € GL(2,R) such that Tr(AQ) = 0. These conditions guarantee that F; is the
curvature form of a T?-bundle N over y. The Go-structure is then constructed from N
by running rescaled Hitchin’s flow. The resulting Gs-structure yields a moment map v of
which N is a level set and rescaled Hitchin’s flow evolves N into other level sets of v.
When the symmetry is enhanced to T? x SU(2), the remaining GSV?)-symmetry passes
to the quotient x and preserves its coherent tri-symplectic structure (see Eq. (5.2.1)). We
describe such four manifolds with a free GSY)-symmetry, as this gives a local description
in the principal part of Gy manifolds with T? x SU(2)-symmetry in terms of an explicit

differential equation.

5.2.2 On 4-manifolds with a coherent symplectic triple and GSV(?)-
symmetry

Let x be a coherent symplectic 4-manifold with a GSY® structure-preserving free action
generated by the vector fields Vi, Vs, Vi satisfying [V;, V] = €% Vi. Since the action is
structure-preserving, we have that Ly,6; = 0, therefore, @) is GSVY@)_invariant. Moreover,
as (Q is also positive definite, there exists a unique real symmetric, positive definite 2 x 2
matrix T such that 772 = T-HT~1)? = Q, which is GY@-invariant as well.

Let vol, := %50 A ¢ and define the forms o; := 25:1 T;;0; for i = 1,2, which then

satisfy o; A 0 = 20,5 vol,.. Define the metric:
Gy (u,v) voly, = og A 1,01 A 1,09,

for all u,v € T,x and all x € x. With respect to this metric, the vector fields V; are
Killing for g,.

Lemma 5.2.3. There are unique g, -orthonormal one-forms o; for i =0, ..., 3 such that

UOZOZQ/\CK1+042/\043, 0'12040/\062+053/\061,

1 2.
= VOIx(‘/lu‘/Qu‘/g’n'% (523)

/det g,

O'QZOCQ/\O(3+041/\042, Qo =

where Gy is the matriz (g, (Vi, V;))ij=1,23-
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Proof. 1t suffices to prove this statement in a point. Indeed, this reduces the structure
group of the bundle of coframes satisfying Eq. (5.2.3) to the trivial group. Hence, it
admits a global section.

For the pointwise statement, fix a volume form on V = R* and consider the map
NN A 2R, a®f—alp.

This defines an inner product on A? with signature (3,3), which gives rise to a cover
SL(4,R) — SO(3,3). The two-forms o;s are orthogonal to each other and span a posi-
tive subspace. The statement for the first three equations of Eq. (5.2.3) follows because
SO(3,3), and hence SL(4,R), act transitively on positive subspaces.

The stabilizer group inside SL(4,R) of the two forms in Eq. (5.2.3) is SU(2) C SO(4),

. o). . . 4 1 A
which acts freely and transitively on the unit sphere in R*. Because MVOIX(Vl, Vo, Vi, +)

has unit norm, one uses the SU(2)-action to make this one form equal to ayp. O

We define the unit vector field X := ag, which satisfies the conditions ay(X) = 1 and
a;(X) =0 for i = 1,2,3, and determines the a;s by a; = 0,-1(X,-). Consider the two
3 X 3-matrices:

mij = 0i-1(X, V) = ai(V), 735 1= 05-1(Vi, V1),

where (7, k,[) is a positive permutation of (1,2,3). We also define the one-forms J, and
0; for 1 =1,2,3 by:

50 = \/detgxozo :VOIX(%,‘/Q,‘/;;,'), (51(‘/}) :51']'; 67,(X) = 0.
which satisfies «; = Z?:l 1i0;.
Lemma 5.2.4. The matrixz functions n and 7 have the following properties

o 7=adj(n"),

the row vectors of T and 1 are GSY® -equivariant, and hence, their determinant is

GSY ) invariant,

The metric on the vector fields Vi, Va, Vs, which we called gy, is determined by n via:

gy =n"n, (5.2.4)

We have the matriz equation:

1 . \Tx
= 2.
o aet(n) do A nd +adj(n)’ 9, (5.2.5)
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where 0 = (0'1,0'2,0'3)T, o = ((51,52,63)T, a = (OZQ N ag, a3 N\ ap, a1 A CYQ)T and 5_ =
(02 A ds, 03 A 01,01 A )"

Proof. For the first statement, we can compute, using Eq. (5.2.3):
Tij = 0i-1(Vi, Vi) = am A i (Vie, Vi) = Dbt — Nt = adj(n) i,

where (i,m,n) is a positive permutation of (1,2, 3).

Since the vector field X commutes with V;:

Vi, X] = Lvi(af) = (Lv,a0)* =
we can obtain the second statement as follows:
Ly, nij = 0i—1(X, [Vi, Vi]) = —0i-1(X, V))erji = —nu€rji.

The proof is analogous for 7.

The third statement follows from the following decomposition:

w

3
()i = 9 (Vi, Vi) = > ae(Vi)aw(Vy) =D iy = (07 0)i-
k=1 k=1
For the fourth statement, observe that the equation «; = Z?:l 1n;;0; implies that a =
adj(n)T§. Furthermore, Eq. (5.2.4) implies det(g,) = det(n)?. In particular, 7 is invertible
and the sign of det(n) does not change on y. By swapping o, and oy if necessary, we
can assume that detn > 0. The formula follows from plugging these expressions into
Eq. (5.2.3). O

5.2.3 The differential equation

Now, we deduce how the equations do; = 0 transform under the given change of frame.
We assume that H'(y,R) = 0 so that there is a function R such that dR = &,. The
dual vector field O is equal to (detn)~1 X, so it satisfies [Og, V;] = 0, for every i = 1,2, 3.
Morever, by Lemma 5.2.4 and the commutator relationships for X and V;, we deduce that

dd = —0 and d(fm%) =0.
We recall the following version of Lemma 5.1.13 in terms of differential forms, which

can be proven using Cartan’s formula.

Lemma 5.2.5. A smooth function f: x — R?® is SU(2)-equivariant if and only if (df =
f X 5) mod 50, fOT’ (f X 5)2 = ei]-kfjék.
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Consequently, we have
on or
dn = 5+ —=0y, dr= 0+ ==46
where (7 x §);; = (n; x §); and (7 x §);; = (1; X 0);, i.e. we are taking the cross products
of the rows of n with ¢. Putting all together in Eq. (5.2.5), we get

1
detn

1

d p—td
7 detn

So A (—=dn A6 —ndd) +dr N =

o A (—n8) + (OrT)do A 6.

The last step is due to the two identities:

(nx0)ANS=2n6, (Tx86)A6=0.

Extend T to a 3 x 3 matrix by padding it with one in the (1, 1) entry and by zeros in the

first row and column elsewhere. This extension is such that ¢ = T, which implies:

do =dT Ao = Or(T)T 0o Ao = Op(T)T 760 A 6. (5.2.6)

Combining the two equations for do and using deltnn = (1)~ gives:
0 = (OrT — (OT)T 7 — (77) ™16y A 4. (5.2.7)

Proposition 5.2.6. A coherent symplectic 4-manifold x with free GSV®) _symmetry and
intersection matriz Q) admits a matriz-valued function 7: x — Msx3(R) whose rows are
equivariant with respect to the action of SO(3) on R3 and satisfying the following differ-

ential equation:
OrT = (OrT)T 7 + (77) 71, (5.2.8)

where T : x — M3y3(R) is the, padded as above, matriz satisfying Q = T 2.

Conversely, given a function T : (a,b) — Sym,,,(R) of positive-definite matrices,
identified with T : (a,b) — Symg,3(R) padded as above, then, every equivariant solution
7 : (a,b) x GSU®) — Ms,3(R) of Eq. (5.2.8) defines a coherent symplectic structure on

(a,b) x GSY@) with intersection matriz Q = T~2.

Proof. The first statement follows from Eq. (5.2.7) since the dyAd; are linearly independent
on x.

For the converse direction, define the frame dg,...,d3 on (a,b) x SU(2) such that
dp = dR and §; are the invariant one-forms on SU(2), hence, satisfying dé; = —e;;,0, A 6.
Lemma 5.2.5 and Eq. (5.2.8) imply

dr =7 x 0+ ((OrD)T 7+ (7)) b (5.2.9)
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Define the forms «a; by the equation a; = 22:1 ni;0;, with n := adj(r7)) as before.
From the a;s, we can reconstruct the forms o by Eq. (5.2.3) and then & through the
transformation matrix 7. We deduce that &; are such that o A 6; = 0 and 6; A 7; =
Qijéao A 09, where Q = T—2. Our previous computations show that Eq. (5.2.9) implies

that the forms &; are closed and, hence, we conclude. O

Remark 5.2.7. If ) is the identity matrix, then g, is hyperkéhler and by rotating oy, o1, o2
we can assume that 7 is a diagonal at a given point. The diagonality is preserved along R
(as in the Biachi IX ansatz) by Eq. (5.2.8), and we have Og$7% = 1 for i = 1,2,3. So each
7;; is of the form /2R + k; and can we assume that ky + ko + ks = 0 and ky > ky > ks.

The metric g, is

1 dR? 4 7'227'335% i 7’3371153 i T117'225§
T11722733 T11 T22 733
If all k&, = 0, then, all 7;; are equal and the metric is flat. If k&, > 0 and ky = k3 < 0
then g, is the Eguchi-Hanson metric. In all other cases the metric is incomplete. Note
that the Taub-NUT and Atiyah-Hitchin metric are not described by our set-up, since the
SU(2) action is not tri-holomorphic on these spaces. Instead, the action rotates the three
hyperkéhler two-forms.

We refer the reader to [7] for further details on hyperkéhler metrics in 4-dimensions.

5.2.4 From coherent tri-symplectic manifolds to G, manifolds

Finally, we use Proposition 5.2.6 to obtain a local construction of G, manifolds with
T? x SU(2)-symmetry through [62, Theorem 6.10]. The last object that we need is an
orthogonal self-dual two-form F, € Q%(y,R?) on y with integral periods. This condition
assumes the existence of an anti-self-dual form F_ € Q%(x,R?) such that F, + F_ is
closed and defines an element in H2(M,Z?). In the GSU®invariant case the closedness

condition can always be satisfied.

Lemma 5.2.8. For any GSV@-invariant F, € Q2 (x,R?), there is a F_ € Q2 (x,R?) such
that F'y + F_ is closed.

Proof. Define the anti-self dual two forms that are analogous to the ;s we defined above:

0y = —ag N ag + as A as,
o, = —agNag+asz A a,
0y = —apg N\ az+ ag A ag.
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Then o~ satisfies the same structure equation Eq. (5.2.6). This can be shown by comput-
ing do~ as before or by using a local diffeomorphism that preserves aq, as, a3 and flips

the sign of ayg, i.e pulls back ¢ to ¢~. This implies:
d(c—07) =0r(T)T '6g A (0 —07),

which vanishes as 0 — 07 = 209 A a and « is proportional to dyg. Since F is self-dual,
there is a: y — R? such that F, = a0 = > a;0;. Because F, is G°Y@-invariant, the
same is true for a, which means da is a multiple of ag. Now define F_ := —ac~ and

observe
3

d(Fy 4+ F) =) 2da; Aag Aa; =0,
=1

as required. m

If the function 7' is real-analytic the solution to Eq. (5.2.8) is too by the Cauchy-
Kovalevskaya theorem. Clearly if F; is real-analytic, so is F_ and also the half-flat
SU(3)-structure constructed in [62, Proposition 6.5]. This observation, together with
Proposition 5.2.6 and |62, Theorem 6.10] implies the following theorem.

Theorem 5.2.9 (Aslan-T. [6]). Let T' : (a,b) — Syms,5(R) as in Proposition 5.2.6,
and let F € Q2 ((a,b) x GSV® R?) satisfying Eq. (5.2.2) and such that Fy + F_ from
Lemma 5.2.8 has integral periods. Then, there is a torus bundle N — (a,b) X GSU()
and every equivariant solution 7 : (a,b) x GV — My, 3(R) of Eq. (5.2.8) defines an
half-flat SU(3)-structure on N, which admits a T? x SU(2)-symmetry. Moreover, if the
coefficient function T and Fy are real-analytic, this induces a torsion-free Go-structure

on (—e,€) X N admitting the same symmetry.

The equations can be viewed on the quotient B, parametrised by |u| and v. Indeed
(dv)” is the direction of rescaled Hitchin’s flow. Furthermore, for the coherent symplectic

structure on y;, we have

€4
AR = voly (Vi, V2, Va, ) = 3 =% % @(Un, Up, Vi, Vi) % o(Ur, Up, Vi) = = D pindlpag
i,k k

1
= ——d|ul
5 |l

So, up to a constant, R = §|u|%.
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5.3 T%invariant associative submanifolds

In this section, we study T?-invariant associative submanifolds of the G, manifold (M, ),
endowed with a structure-preserving, cohomogeneity two action of T? x SU(2) on it. We

use the same notation and conventions of Section 5.1.

5.3.1 TZinvariant associatives

As in Section 5.1.3, let U; and U, be the generators of the t* component in t* X su(2).

We give a first characterization of T?-invariant associatives as integral curves of a vector
field.

Proposition 5.3.1. Let Ly be a T*-invariant associative submanifold of M\ S C Mp.
Then, Lo/T? is an integral curve of the nowhere vanishing vector field Uy x Uy in (M \
S)/T?. Conversely, every integral curve of Uy x Uy in (M \ S)/T? is the projection of a

T?-invariant associative in M\ S.

Proof. Since Uy, U, are linearly independent in M \ S, the vector field U; x Us is nowhere
vanishing there, we deduce that {U;,Us,U; x Us} is an associative plane from Proposi-
tion 2.2.8. The statement follows immediately from the correspondence between curves
in (M \ S)/T? and T*-invariant 3-submanifolds in M \ S. O

We now state some general properties of T2-invariant associatives and integral curves
of Uy x U; that will play a crucial role later on. Since the flow of U; x Us commutes with

the group action of G, we have the following.

Lemma 5.3.2. The flow along Uy x Uy preserves the orbit type of G. Therefore, integral
curves of Uy xUs stay in the same stratum of the stratification of the orbit type stratification

theorem, and hence of the one described in Theorem 5.1.7.

In particular, we have proven that the problem of finding T*-invariant associatives
decomposes with respect to the stratification, and, on M \ § it reduces to a problem of

finding integral curves of a nowhere vanishing vector field.

Lemma 5.3.3. The multi-moment map pu : M — R is preserved by the vector field Uy x Us.

Therefore, p is constant on every T?-invariant associative.

Proof. By definition of u; we have du;(U; x Uy) = x@(Uy, Uy, Vi, Uy x Us) for every i =
1,2,3. If Uy, U are linearly independent, then, {U;, U,, Uy x Us} is an associative plane
and xp(Uy, U, Vi, Uy x Uy) = 0 by Proposition 2.2.8. Otherwise, the equation trivially
holds. O
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5.3.2 Associatives in the principal set

In this subsection, we restrict our attention to the principal set Mp. Let Uy, Uy, V1, Vo, V3
be the generators of the G-action as in Section 5.1.3. Note that the action is assumed to

be of cohomogeneity two, hence, the generators are everywhere linearly independent on
Mp.

Proposition 5.3.4. The restriction of (u,v) to Mp is a submersion. In particular,
p=t(c) N Mp is a 4-dimensional submanifold of Mp for every c in the image u(Mp) and
(|ul,v) : Mp/G — R? is a local diffeomorphism onto its image.

Proof. Given a fixed x € Mp, it follows from Corollary 5.1.18 that u(x) # 0. Since pu is
SU(2)-equivariant and v is SU(2)-invariant, it suffices to show that (|u|?, ) is a submersion
at x.

As 22:1 o(Uy, Us, i Vi) = 0, thereisan X € T, M such that 22=1 x(Uy, Uy, Viepir, X)
1. Observe that

3

1

§d|/l|2 = E ,U/k*QO(UlaU%ka)a
k=1

which implies d|u|*(X) = 2 and d|u[*(U; x Uy) = 0. The statement follows because
dl/(Ul XUQ)%OOII Mp. OJ

We now take a different perspective. Indeed, we argued in Lemma 5.1.5 that the
action of SU(2) on M induces on the quotient Mp/T? a principal bundle structure with
structure group GSY() and base space the surface B. Let H be a connection on Mp /'JI‘2
such that the SU(2)-invariant U; x Us is horizontal at each point. A connection satisfying
this property always exists, indeed, we showed in Proposition 5.1.15 that the one induced

by the Go-metric satisfies:
0= g<U1 X U27 V]) = QO(Ub U27 V)

Using such a connection, integral curves of U; x U, are horizontal lifts over such curves
in B.

Theorem 5.3.5 (Aslan-T. [6]). Let H be a connection on the principal GSV® -bundle
Mp/T? — B such that U, x Uy € H. Let v be a curve in Mp/T?. The following are

equivalent:
1. The pre-image wqng (im7y) is a T?-invariant associative in Mp,

2. 7 is an integral curve of Uy x Us,
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3. 7 is the horizontal lift of a level set of |u| on B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral curve
of Uy x Uy in B there is a GSV?) -family of integral curves of Uy x U, in Mp/ T2

Proof. The equivalence between (1) and (2) has been established in Proposition 5.3.1,
while the equivalence between (2) and (3) can be deduced from the G-invariance of U; x Us,

the fact that it is assumed to be horizontal and Proposition 5.3.4. O

5.3.3 Local description of associatives in the principal set

We have seen that Mp/T? is a GSY)-principal bundle over the base B. In Theorem 5.3.5,
the integral curves of Uy x Us in Mp/ T? are described as horizontal lifts of curves in a
surface. In the following, we will show how these horizontal lifts can be computed in a

local trivialization of the principal bundle.

Lemma 5.3.6. Let U x G5V — Mp/T? be a local trivialisation with Uy x Uy € TU x {0},
inducing a local chartid C Mp and a projection map pgsv : U — GV . Then, the fibres

of the submersion (|u|, pasve ) : U — RT x GSY) are associative submanifolds.

Proof. As Uy x Uy € TU x {0}, it follows that its integral curves will be constant on the
GSU® component of U x GSY@). Since || is constant on the GSY()-component and since

integral curves of U; x U, are contained in the level set of || we conclude the proof. [

The aim is to find trivializations of Mp/ T? — B where we can apply Lemma 5.3.6.
Since p is GSV?)-equivariant, we can reduce the structure group of the GSY®)-principal
bundle. Indeed, given v € R?\ {0} and denoting by (v) the line spanned by v, then,
Q. = p~((v)) is an S! reduction of the bundle Mp/T? — B.

Proposition 5.3.7. In a neighbourhood U C B, where (||, v) is a diffeomorphism onto
its image and the image is convex, there exists a flat connection on Q, such that Uy x U,

1s horizontal.

Proof. Let 6 € Q'(Q,,R) be any connection form on Q, for which U; x U, is horizontal.
Then the curvature form df is a basic form, so there is a function f: U/ — R such that
df = fdv A d|p|, where we are considering (|u|,v) as coordinates on Y C B. The form
d|p| is basic and annihilates U; x Us, hence, 8’ = 0+ Fd|u| is also a connection on @, such
that U; x U, is horizontal for every smooth function F' : &/ — R. The new connection
¢’ is flat if and only if (0,F + f)dv A d|u| = 0. Because the image is convex, 0, F = —f

admits at least one solution, for instance, using the methods of characteristics. O
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Theorem 5.3.8 (Aslan—T. [6]). In a neighbourhood U C B where (|ul|,v) is a diffeomor-
phism onto its image, and the image is convex, there exists a trivialization U x GSY?) —
Mp/T? such that U, x Uy € TU x {0}. As a consequence, the map (|u|, posve) is a fibre
bundle map whose fibres are associative submanifolds. Here, pasue s the projection to

GSY®?) coming from the trivialisation.

Proof. The bundle @, has a flat connection for which U; x U, is horizontal. Since U is
simply-connected, there is a trivialization & x S' — @, which induces this connection,
i.e. the horizontal bundle is TU x {0} C T'Q,. Since U; x U, is horizontal the component
in St is constant along integral curves of U; x U,. By equivariance, we get a trivialization
U x GSY®) — Mp/T? such that the component in GSU?) is constant along integral curves

of Uy xU,. We conclude using Lemma 5.3.6 and because the image of (|u|, v) is convex. [

Clearly, the condition on (|u|,v) in Theorem 5.3.8 always holds locally.

5.3.4 Associatives in the singular set

In this subsection, we describe the T*-invariant associative submanifolds of M that are
contained in the singular set of the T2 x SU(2)-action. In particular the following theorem
holds.

Theorem 5.3.9 (Aslan-T. [6]). Let 81,82, S5 and Sy be the strata as described in Theo-
rem 5.1.7. Then,

e S; admits an SU(2)-equivariant submersion F: S8 — S? or F: §; — RP? such that

each (not necessarily connected) fibre is a T2-invariant totally geodesic associative.
e cvery connected component of Sy is an associative G-orbit,

o The set S3 U Sy is totally geodesic, associative and the action of G on Ss is of

cohomogeneity one.

Proof. We first consider S;. For every ¢ € R x R and b € S?, consider the Killing vector
field W, := c1Uy 4 coUs + b1 Vi + ba Vo + b3 V3 and its zero set L., C M\ S. Observe that
every point of §; lies in a unique Ly, up to Loy = L_._p. Indeed, W, corresponds to the
Lie algebra of G, = S*. If Ly, is non-empty, then we define F' : §; — RP? by mapping
each point to the corresponding [b] € RP%.

If Loy is empty, then the map can be lifted to F : & — S% This can be done
because c fixes the Zs-action as follows. As G, is the quotient of a compact 1-dimensional
subgroup of T? x SU(2) and W,,;, spans its Lie algebra, we deduce that ¢ € Q x Q \ {0},

106



(otherwise, L., is empty). Any line in R? determines two open half-spaces which are such
that —Idg2 is bijective. Moreover, if the line is chosen to be of irrational slope, then it
does not intersect Q@ x Q\ {0}. Let H™ be one of these half-planes. Now, every x € & is
in L.y = L.y for some (¢,b) € Q?\ {0} x S?, but only one element of {£c} is in H™.
Hence, we argued that

Si= |J L

(cb)eHT x 52
and that the union is disjoint. We define F' : §; — 52 such that on each of L., the value
of F'is b.
To show that F'is equivariant, let .5 be the Lie algebra element corresponding to the
vector field W.; and recall that

LQ,Q = {$ eEM | gc,b € gx}7

where g, is the Lie algebra of GG,. The equivariance follows because, for every g € SU(2)

we have:

gc,b € 9 = gc,gb = Adgéc,b € Adggz = Ygz

The space L. is a totally geodesic submanifold since it is the zero set of a Killing
vector field and, since the vector fields Uy, Us, Uy X Uy commute with W, ;, they are linearly
independent and tangent to L.;. It remains to show that F'is a submersion. For a point
x € 81, a neighbourhood of the orbit Gz in & is diffeomorphic to R x G/G,.. The vector
field U; x U, is tangent to the R direction, so F' is invariant under the coordinate in R
and descends to a G-equivariant map G/G,,, which is a T?-invariant submersion.

We now turn our attention to S;. By Proposition 5.1.9, Ss is smooth, 3-dimensional
and, by Theorem 5.1.7, associative. As it is 3-dimensional, we deduce that every connected
component is a G-orbit.

Finally, we consider S3US,. In Proposition 5.1.9, we have seen that S3 is smooth and
3-dimensional and that S, is smooth and 1-dimensional. It follows that Ss is dense in
S3 U Sy and it suffices to show that S3 U Sy is smooth and that Ss is associative, totally
geodesic and of cohomogeneity one. Clearly, S3 is open in S3US,. Hence, it is enough to
show smoothness at a point © € §4. By Theorem 5.1.7, the normal representation of GG, on
C? splits into two invariant components N = N; & N, where dim(N;) = 1, dim(N) = 2.
The set of points with 3-dimensional stabilizer is exactly N;. So, by the slice theorem,
there is a diffeomorphism of Gz x N to a neighbourdhood U C M of Gx such that Gz x N;
is mapped to U N (S3 U Sy) and smoothness follows.

107



The set 83 is totally geodesic because it is the common zero locus of three Killing
vector fields. The submanifold S3 is associative because at each point the tangent space
is the span of Uy, Uy and Uy x Us. O

Combining Theorem 5.3.8 with Theorem 5.3.9 we obtain an associative fibration in
the sense of Definition 3.1.5.

Corollary 5.3.10. If (|u|,v): B — R? is a diffeomorphism onto its image with fibres of

v connected, then M admits a global T?-invariant associative fibration.

5.3.5 Singularity analysis

In this last subsection, we show that every T?invariant associative in a G, manifold with

T? x SU(2)-symmetry needs to be smooth.

Theorem 5.3.11 (Aslan-T. [6]). Every T*-invariant o-calibrated current in M is a
smooth submanifold. Moroever, if a T?-invariant p-calibrated current intersects the sin-

gular set of the T? x SU(2)-action, then, it is contained in the singular set.

Proof. As a first step, we observe that the local uniqueness and existence theorem implies
that T2-invariant o-calibrated currents are smooth away from S = S, U S;.

Moreover, if L is a T?-invariant ¢-calibrated current intersecting S, we claim that
it needs to be contained in the singular set of the G-action. Indeed, if by contradiction
supp LNMp # 0, then, ,u|suppL = ¢ for some constant ¢ # 0, by Corollary 5.1.18. However,
once again by Corollary 5.1.18, we have that ,u‘ SUS, = 0 which is a contradiction as p is
constant on L.

All we are left to do is to consider: L C & U S and not completely contained in S.
Note that the smoothness of L C S5 U Sy U Sy was proven in Theorem 5.3.9. Now, given
z € 8§ N L # () we can associate a unique vector field W,;, on M, such that its zero set
in 81 coincides with L N'S; (or one of its connected components). We conclude that L
is globally the zero set of a Killing vector field W,;, which is a smooth totally geodesic
submanifold. O

Remark 5.3.12. The approach used to study the singularities in Theorem 5.4.5 and The-
orem 5.4.19 can be attempted for T?-invariant associatives as well. However, in this case,

we could not rule out the existence of branched points.
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5.4 T’-invariant and SU(2)-invariant coassociative sub-
manifolds

In this section, we study coassociative submanifolds of the Gy manifold (M, ¢), endowed
with a structure-preserving, cohomogeneity two action of T? x SU(2) on it. We use the
same notation and conventions of Section 5.1.1. In particular, we consider coassociative
submanifolds that are invariant under T? = T? xS* C T? x SU(2), for some S* C SU(2),
and SU(2) = Idp x SU(2) € T? x SU(2).

5.4.1 T°-invariant coassociative submanifolds

Given any S' C SU(2), we can consider a structure preserving T°-action on M by
T? xS' € T? x SU(2). Moreover, up to passing to some quotient, we can assume that
the action is effective. We denote by S the singular set of this action which satisfies:
S;US; CSC S USUS;US,. Madsen and Swann proved in [64, Lemma 2.6 that the
stabilizer of an effective T*-action on a G, manifold is either trivial, a circle or a two-torus.

In the notation of Section 5.1.3, we can assume that the generators of the T® action
are Uy, Us, V) and, hence, the multi-moment maps associated to it are p,601,6? and v.
Similarly to the T?invariant associative case, we can see T>-invariant coassociatives as

integral curves of a vector field.

Proposition 5.4.1. Let ¥ be a T-invariant coassociative submanifold of M\ S. Then,
Yo/T? is an integral curve of the nowhere vanishing vector field Vy, in (M \ S)/T®.
Conversely, every integral curve of Vi in (M \ S)/T? is the projection of a T*-invariant

coassociative in M\ S.

Differently from the associative case, Vi, does not commute with T? x SU(2), hence,

integral curves do not respect the stratification of Section 5.1.2. However, the following
holds.

Lemma 5.4.2. Let v be an integral curve of Vuy in M \'S. Then, the multi-moment

map iy s strictly increasing along 7.

We recall that T*-invariant coassociatives are the level sets of the following multi-

moment maps.

Proposition 5.4.3 (Madsen-Swann [64]). The map (0},6?,v) : M\ S — R® is a sub-

mersion with fibres T?-invariant coassociative submanifolds.
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Remark 5.4.4. Differently from the T?invariant associative case, where we showed that
M admits an associative fibration in the sense of Definition 3.1.5, we can not argue in
the same way in this case. Indeed, a priori we do not know if there exists a T>-invariant

coassociative passing through each point of S.

Using a completely different approach to the one employed in Theorem 5.3.11, we can
study the singularities that a T*-invariant coassociative can develop. To this scope, we
need to describe the structure of the local model near the singular set S. This means
that we only have to consider two cases, i.e., when the stabilizer is a circle or when it is

a torus. We refer to these sets as S; and Ss, respectively.

5.4.1.1 Blow-up analysis at S;

Let p € S; and let U; the generator of the stabilizer at p inside T®. The complement
is assumed to be spanned by U, Us. We pick normal coordinates around p, which we
identify as 0, using Lemma 2.2.15. We are now, in the set-up of Section 2.2.3 and we
deduce that U, = Uy and Uy = Uy(0), Us = Us(0) constant vector fields. If we write R7
as R3 @ C2, where R3 is determined by Us, Us, Us X 0 Us, then U, generates a U(1)-action
on the C2-component preserving ¢g. Since this U(1) is a subgroup of G, and commutes
with Us, Us and Us X 0 Us, it acts as a maximal torus in C2. We conclude that the
integral curves of V°u) passing through p generate, under the limit of the T*-action, a
multiplicity-1 plane. Here, V° denotes the flat covariant derivative on R” and p? is the

multi-moment map defined by:
d,u(l) = *900(015 [727 037 )

5.4.1.2 Blow-up analysis at S,

Given p € Sy, we denote by Us, Us the generators of the stabilizer of the T*-action at
p and by U; the generator of the complement in the Lie algebra of 3. Now, we pick
normal coordinates at p = 0, as above. In particular, we deduce from Section 2.2.3
that Ult - U = U1(0), constant vector field, and that Uy = Uy, U3 = Us. We write
R” = R x C3, where R is determined by the flow of Uy, and we observe that Uy, Us
generate a T2, pp-preserving action that commutes with U;. Hence, it acts only on the
C3-component as a subset of SU(3). It is straightforward to see that integral curves of
VO passing through p generate, under the limit of the T*-action, the multiplicity-1 cone:

R x N, where N is the Harvey-Lawson cone in C?.
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Theorem 5.4.5 (Aslan-T. [6]). Let ¥ be a T*-invariant xp-calibrated current of M.
Then, ¥ is smooth at each point of M where the stabilizer of the T*-action is 0-dimensional
or 1-dimensional. Otherwise, the stabilizer is 2-dimensional and Y has a tangent cone

modelled on the product of the Harvey and Lawson cone with a line.

Proof. Let ¥ be a xp-calibrated current which is invariant under the T*-action. It is clear
from the local existence and uniqueness theorem that at each point where the stabilizer
of the T®-action is O-dimensional, then, ¥ is smooth there. In particular, ¥ can develop
singularities only at S.

Note that ¥ can not be contained in S and corresponds to an integral curve of Vi
in M\ S. Without loss of generality, we consider a connected component of ¥ in M \ S.

Let p € (suppX) NS and let By(0) be a neighbourhood of p, identified with 0, as in
Lemma 2.2.15. Note that the restriction of ¥ to By(0)\S corresponds to a unique integral

curve of Vyy up to picking B,(0) small enough. Otherwise, p;|, would have an interior

|
maximum or a minimum contradicting Lemma 5.4.2. In particLular, the support of the
integral curve can not be a loop passing through p. This means that v; as in Fig. 5.2 can
not be an integral curve of V.

We now want to show that, under a suitable blow-up, v converges to an integral curve
of V949 passing through zero. We can then conclude by the analysis of the local models
(cfr. Section 5.4.1.1, Section 5.4.1.2) and by Theorem 2.2.12.

Since 0 € Imy, we can choose a sequence of points of Imy: z, € Cy := Sy,(0) =
{z € B5(0) : |z[gr = 1}. In particular, kz), € S;(0) will converge, up to passing to a
subsequence, to some T € S;(0). We denote by 7 the integral curve of (@T}t with
initial value z. Since for £ — oo we have that kx, — 7 and (%t — Vo) because
of Lemma 2.2.14, it follows from the theory of ODEs that yff,j converges to g integral
curve of V24 of initial value Z. From the choice of 2 and Lemma 2.2.14, we deduce that

{’yff,j}z‘;l is a blow-up of 7 and we can conclude the proof. O

Remark 5.4.6. In Section 5.5.3, we will see that there are examples of singular T*-invariant

coassociatives.

Remark 5.4.7. Observe that we have not used the fact that T? is a subgroup of T? x SU(2).

In particular, Theorem 5.4.5 holds in Go-manifolds with a structure-preserving T*-action.

On B := Mp/G the T?-invariant coassociatives correspond to the level sets of v.

Theorem 5.4.8 (Aslan-T. [6]). Let ¥y be a T*-invariant coassociative submanifold of
Mp. Then, the projection of ¥y to B is contained in a level set of v. Conversely, every

level set of v on B can be lifted to an S of T-invariant coassociatives.
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Figure 5.2: Blow-up procedure of Theorem 5.4.5

Proof. If we consider the projection of ¥y to Mp/ T?, we obtain a surface ¥/ T? which is
invariant under the action of an S* ¢ GSY(?). So, projecting it to B reduces the dimension
to one and we obtain a curve in B. From Proposition 5.4.3 and dimensional reasons, we
conclude the proof of this direction. The converse follows from the fact that T*-invariant

coassociatives are in 1-to-1 correspondence with the S'-reductions of the GSV®-bundle
Mp/T?, for a fixed S* c GSV®), O

Remark 5.4.9. Observe that, if ¥y is a T*-invariant coassociative with respect to some
T? xS € T? x SU(2) and its projection to B is contained in a level set of v, then, g - ¥
is also a T*-invariant coassociative with respect to T? x(g-S') C T? x SU(2) and projects

to the same level set of v.

As a consequence of this discussion we deduce that B has a nice parametrization
determined by associative and coassociative submanifolds, which are T?-invariant and

T3-invariant respectively.

Corollary 5.4.10 (Associative/coassociative parametrization of the quotient). Consider
the local orthogonal parametrization of B := Mp/G given by (|u|,v). Then, the coordinate
lines correspond to T%-invariant associative submanifolds and T>-invariant coassociative

submanifolds, respectively.
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Figure 5.3: Associative/coassociative parametrization of B

Proof. The proof follows immediately from Theorem 5.3.5 and Theorem 5.4.8. O

5.4.2 SU(2)-invariant coassociative submanifolds

For the sake of brevity we omit the proofs, which are analogous to the other cases. In
order to guarantee the existence of SU(2)-invariant coassociatives, we need to assume that
w(V1, V4, V3) = 0 from now on. Actually, it is enough to have that it vanishes at a point.
Indeed, Cartan’s formula, together with [Lx,iy| = 4x,y], implies that p(V1, Vs, V5) is a
constant function. A sufficient condition, but not necessary as shown in Section 5.5.3.5,
is that the SU(2)/T'y action has a singular orbit. We denote the singular set of this action
by S.

Proposition 5.4.11. Let ¥y be a SU(2)-invariant coassociative submanifold of M\ S.
Then, ¥o/SU(2) is an integral curve of the nowhere vanishing vector field Vn in (M \
S)/SU(2). Conversely, every integral curve of Vn in (M \ S)/SU(2) is the projection of

a SU(2)-invariant coassociative in M\ S.

Lemma 5.4.12. Let vy be an integral curve of Vn in M\ S. Then, the multi-moment

map n is strictly increasing along 7.

Proposition 5.4.13. The flow of Vn preserves the orbit type of G. Hence, the integral

curves of Vn stay in the same strata of the stratification described in Theorem 5.1.7.
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By Lemma 5.1.5, the action of T2 on M induces on the quotient Mp/(SU(2)/I;) a GT°
principal bundle structure with base space B. Let H be a connection on Mp/(SU(2)/T'y)
such that the T?-invariant vector field Vn is horizontal. For instance, the connection
induced by the metric g, satisfies this property 0 = xo(U;, V4, Vo, V3) = g(U;, V) for

1 =1,2. As in Theorem 5.3.5, we deduce the following proposition.

Theorem 5.4.14 (Aslan-T. [6]). Let H be a connection on the principal G -bundle
Mp/SU(2) — B such that Vp € H. Let vy be a curve in Mp/(SU(2)/I's). The following

are equivalent:
1. The pre-image WS_[}(Q)(imﬂy) is a SU(2) invariant co-associative in Mp,
2. 7 is an integral curve of Vn,
3. 7y is the horizontal lift of an integral curve of Vn in B.

Moreover, the correspondence between (1) and (2) is 1-to-1, while for every integral curve
of Vi in B there is a T?-family of integral curves of Vi on Mp/(SU(2)/Ty).

Remark 5.4.15. Note that, we can not conclude that we have an SU(2)-invariant coasso-
ciative fibration in the sense of Definition 3.1.5. Indeed, Theorem 5.4.14 only implies that

Mp admits a foliation of coassociative leaves.

Differently from the other cases, the obvious 1-forms that would give constant quan-

tities on SU(2)-invariant coassociatives are not closed. These are defined as:
wr = QO(‘/%‘/:%'); W2 1= ()0(‘/37‘/17')7 w3 = SO(‘/la‘/%) (541)

Remark 5.4.16. These 1-forms can be put in the context of weak homotopy moment-maps
(see [39] and references therein). Moreover, since iy,w; = —0! the w;s do not descend to
the quotients: Mp/(SU(2)/T3), Mp/T? and B.

Proposition 5.4.17. A 4-dimensional submanifold, ¥, is a SU(2)-invariant coassocia-
tive submanifold of M\ S if and only ifwi}zo =0 foralli=1,2,3.

Remark 5.4.18. The previous proposition does not use the additional T?-action. In par-
ticular, we re-obtain the characterizing ODEs for the SU(2)-invariant coassociative sub-
manifolds on the Bryant-Salamon manifold A% (S*) and A% (CP?) computed in [49].

In a similar fashion to Theorem 5.4.5, one can obtain the following regularity result

on SU(2)-invariant coassociative submanifolds.
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Theorem 5.4.19 (Aslan-T. [6]). Every SU(2)-invariant xp-calibrated current in M is a

smooth submanifold.

Remark 5.4.20. The existence of the T?-action is crucial for Theorem 5.4.19. Indeed,
Karigiannis and Lotay constructed in [49] examples of asymptotically singular SU(2)-

invariant coassociatives on A% (S*) and on A? (CP?).

5.5 Examples

In this final section, we consider the flat space, C* x S!, the G, manifolds constructed
by Foscolo-Haskins—Nordstréom in [32] and the Bryant—Salamon G manifolds of topology
S3 x R*. On these spaces we explicitly discuss the general theory we developed in the

previous sections.

5.5.1 Flat C?> x S!

Given any Calabi-Yau structure on a six-manifold M there is natural Gs-structure on
St x M given by

1
p:=ReQl —df Nw, xp= —§w2—d«9/\ImQ (5.5.1)

where # parametrizes S*.
Consider the flat Calabi—Yau structure on C3. Namely, if (z1, 20, 23) € C? is such that

zj = x; +1y;, then:
3
W= Z dz; A dy;
=1
is the standard Kihler form of C? and
O :=dz Ndzg Ndzs

is the standard holomorphic volume form. The induced Gs-structure on C* x S! is the
flat one.
Clearly, C3x S admits the required symmetry, where (¢}, e, A) € U(1)xU(1)xSU(2)

acts on C? x S! as follows:
(eit,ei)‘,A)(zl,zg,23,ei9) — (622'/\21,6—2‘/\/1 . (2,2’ Z3>T,€i(t+9)).

Associatives in C? x S! with T*invariance are products of S with an holomorphic

curve in C3, invariant under the remaining S*. These are exactly the fibres of the map

C?® — C?, (21, 29, 23) — (zlzg,zlzg),
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where the singular set is mapped to 0. In the following, we describe the fibres using our
moment map method.

It is straightforward to verify that the stratification of Section 5.1.1 is as follows:
o Mp=C\{0} x C?\ {0} x S,
e S ={0} xC*\ {0} x S,
e S, =10,
e S3=C\ {0} x {0} x S,
e S, ={0} x {0} x St
The generators of the t> component are:
Uy =0y Uy=2(—y10s +210y,) + Y20z, — 20y, + Y30z, — T30y,
while the generators of the su(2) component are:
Vi= %(_y:iawg + 230y, — Y2025 + T20y,),
Vo= 2 (20, — a0, + 22Dy + 120,).

2

1
Vs = 5(926@ — 220y, — Y30z, + 230,,).

From these, we compute the multi-moment maps v, n:

1

1
v=lul - §(|22|2+ |2%), (l22f® + l2s*)?,

ED)
and pu, 6:

Im(z1(25 — 23))

1
p=g | “Re(a(z12) |,
2Im(z12923)
2Re(2273) 1 Re(z1(25 — 23))
0' =~ | 2Im(z9%3) 0% = = | Im(21(22 + 22))
(23 = [22[?), 2Re(212223)

Since the metric is Euclidean, it is easy to compute the gradients:

Vv = U1 X U2 = 2(.’171811 + y15’y1) — (.Tgaxz + y28y2 + .’173813 + y3ay3),

Vi = —= (@2 + [y2]? + |23]* + |y3]*) (2205, + Y20y, + 305, + y30y,).

1
8
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We identify the principal set Mp = C\ {0} x C?\ {0} x S* with C\ {0} x H\ {0} x S*.
Using polar coordinates (re®, pg) € C\ {0} x H\ {0} for r,p € RT and £ € S and
q € Sp(1) we get

Uy x Uy = 210, — po,.

In particular, the integral curves of U; x Uy can be computed explicitly. They induce, for

any fixed constant C' € R* and ¢ € Sp(1), the following T2%-invariant associatives:
y q p{l), g

S C
Leg = { (rez’t, me*“q, e"’) reR te S 0e Sl} , (5.5.2)

which have topology R x T?. If we write ¢ = ag + ia1 + jas + kas, then e~ acts
on ¢ not by quaternionic left multiplication but, after the identification with C2, i.e.

q = (ap +iay, ay + iaz) € C2

Theorem 5.5.1 (Aslan-T. [6]; T*-invariant associatives in C* x S1). Consider the strat-
ification of C3 x St into Mp U S US, US3 U Sy, as given in Section 5.1.1. Then, each

strata decomposes into T?-invariant associatives in the following way:

e Mp can be fibred by T?-invariant associatives of topology T? xR that are defined by
Eq. (5.5.2).

e S = {0} x C?\ {0} x S is fibred by totally geodesic T*-invariant associatives of
topology S* x (R*\ {0}) via the Hopf fibration map. Clearly, these associative extend

to smooth associatives of topology S* x R2.
[ ] 82 = @

o S3=C\{0} x{0}xS" is clearly an associative which extends to a smooth associative
of topology S* x R? if we add Sy = {0} x {0} x St to it.

In particular, this decomposition defines a fibration in the sense of Definition 3.1.5.

To put the fibration in the context of Section 5.3.3, we can see that Mp/T? =
{(r,p,q)} = RT x R" x Sp(1) and, hence, the base of the SU(2)-bundle B is given
by {(r,p)} = R x R*. The multi-moment maps (||, ) in this coordinates become:

2rp*(apa; — asas)
v=2 g, u= | @ —drd-a) |,
2rp*(—agaz — aias)
which satisfy the conditions of Corollary 5.3.10 as || = 7p?. In particular, under a suitable
identification of C* = H], the above trivialization is such that the SU(2)-component of

U, x U, identically vanishes.
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Figure 5.4: Blue: The level sets of |u| = rp? in B = RT x RT. Every level set represents an

SU(2)-family of T*invariant associatives in Mp. Orange: The level sets of v = 2r* — p?.
Every level set represents an S? family of T3-invariant coassociatives in Mp.

We now fix the S* € SU(2) generated by V3 and describe the coassociative submani-
folds invariant under the resulting T*-action. These coassociatives are products of S* with
a T?-invariant special Lagrangian submanifold of phase —/2 in C?, which are classified
in [37, II1.3.A Theorem 3.1] as the level sets of |z1|* —|z;|? for j = 2,3 and Re(z12223) = ¢s.
This agrees with our moment map description, as the T?-invariant coassociatives are level
sets of (63,02, v) on M\ S;.

Finally, observe that every four-plane {p} x C? C S' x C x C? is coassociative for every
p € St xC. Moreover, it is SU(2)-invariant because SU(2) only acts on the C?-component.
Alternatively, we obtain the same result by computing
0,

Vi —
=73

whose integral curves correspond to SU(2)-invariant coassociatives in Mp.
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5.5.2 Foscolo—Haskins—Nordstrom manifolds

The FHN manifolds, described in Section 2.2.5, admit the required T? x SU(2)-symmetry
under the additional assumption a := ay = a3 and b := a;. Indeed, the action of
(A1, A2,7) € U(1) x U(1) x SU(2) on ([p, q],t) € (SU(2) x SU(2))/ Ky x I, given as follows:

(A1s A2,7) - [0yl t) = ([MpAa, vgal, 1), (5.5.3)

is structure preserving (cfr. Eq. (2.2.8)), where the two U(1)s are generated by quater-

nionic multiplication by 4.

Remark 5.5.2. Obviously, there is another action of (A;, Ay, 7) € T? x SU(2) on ([p, q],t) €
(SU(2) x SU(2))/ Ky x I:

(A1, A2,7) - ([p, q), 1) = ([7pX2,/\1qX2]7t)-

The discussion is analogous to the one for Eq. (5.5.3) and we leave it to the reader.

5.5.2.1 The stratification

We first deal with the set: (SU(2)xSU(2))/KoxInt(]). If K is trivial, it is straightforward
to see that the principal stabilizer of the T? x SU(2)-action is generated by (—1y2, —lsy(2)).
On the other hand, if Ky = K,,,, N K2 the principal stabilizer is a discrete subgroup of
T? x SU(2) with I'; # 0. In both cases, GSU?) = SO(3) and the singular set is given by:

Sy = {([p.ql,t) € (SU2) x SU(2))/Ko x Int(I) : p € C x {0} € H},
S =1{([p.ql.t) € (SU2) x SU(2))/Ko x Int(I) : p € {0} x C C H},

with 1-dimensional stabilizer. If K is trivial, the stabilizer at ([p, ], ) is either the circle
{(\ N, gAg)} or {(\, X, gAq)}, depending if ([p,q],t) is in Sy or S_.

To understand the stratification on (SU(2) x SU(2))/K we need to distinguish three
cases:

Case 1 (K = ASU(2)). If we identify SU(2) x SU(2)/A SU(2) with S® via [(p,q)] —
pq, then, the action of T? x SU(2) becomes, for every p € S* C Sp(1):

(A1, A2,7) - p = 7.

We deduce that the stabilizer is always 2-dimensional and it is the two torus: {(Ay, A2, DPA1p)}.
Case 2 (K = {lgy)} x SU(2)). Under the identification of (SU(2) x SU(2))/K to
S3 given by [(p,q)] — p, the T? x SU(2) action becomes:

()\17 )\277> p= )\lp)\_27
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where p € S* = Sp(1). Hence, the stabilizer is the Z, x SU(2) given by {£12,~} if
p ¢ (Cx{0}uU{0} x C) C Sp(1), otherwise it is the 4-dimensional SU(2) x U(1) given by
{N A7)} or {(L A7)}

Case 3 (K = K,,,). Under the isomorphism for K,,, of Eq. (2.2.5), we have that
two elements of SU(2) x SU(2) are in the same equivalence class if and only they they are
equal up to right multiplication of (e~ ei™?) for some @ € [0,27). It is straightforward
to verify that the stabilizer at [(p,q)] is 1-dimensional if p ¢ C x {0} U {0} x C C Sp(1).

Otherwise, it is 2-dimensional.

5.5.2.2 The multi-moment maps

In this subsection we compute the multi-moment maps on (SU(2) x SU(2))/Ky x Int(])
and hence, by continuity, on the whole space.

Consider the Hopf fibration map S® C H — S? C imH that maps p — pip. Taking
two copies of the Hopf fibration, together with the identity on Int(7), yields the quotient
map to the T%-quotient:

w2+ (SU(2) x SU(2))/Ky x Int(I) — S? x S? x Int(I)
(p7 q7 t) H (U’ w’ t)’
where v = ¢pipg = v11 + vo] + v3k and w = qiq = wii + wej + wsk.

If h :=Dpip = hii + hej + hsk and g, := qlg = g11% + gi27 + g3k, then, the Killing

vector fields of the T? x SU(2)-action satisfying Eq. (5.1.2) are:

3
Ul(p7 q, Ir) = (Zpaoao) = (ppraOaO) = - Z h’mem(p7Q7r)7
m=1
U2(p7 q, ’f') = (—pZ, —QZ,O) =e + fla
1 1 1<
v — —2(0,-1g,0) = —=(0, qglg, 0) = ~ mfoms
1(p.q.7) = =5(0.~1g,0) = (0, 47lq, 0) QmZ:lgl’ f

where [ = 1,2,3 and ¢, f; form the standard orthonormal left invariant frame of SU(2) x
SU(2) as defined in Section 2.2.5.2.

A straightforward computation gives the multi-moment maps in the quotient:

v=—4(b—c1){v,w)gs, (1= —4abv Xgs w,

0' = 2av — 2(a — b) (v, w)psw, 0* = —2(b + co)w, (5.5.4)
_ Primitive of (2ba2 + co(b* + 2a* + 0162)>

n= \/—_A )

where we used the following identities:
hy = (v,w)gs, (b, g)rs =v, gi=w, (hxg)=@xw).
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5.5.2.3 Associatives in the singular set

As a first step, we deal with (SU(2) x SU(2))/Ky x Int(I). Observe that the images of

S, and S_ under the T?-projection map mp2 are:
O, ={(v,v,t) € S* x S? x Int(I)}, O_ ={(v,—v,t) € S* x S* x Int(])}.

As argued in Lemma 5.1.5, the action of GSU(?) descends to (M \ S)/ T? and G5V =
SO(3) acts diagonally on S? x S?. This SO(3)-action is of cohomogeneity one and the
singular orbits are O, and O_ which have stabilizer diffeomorphic to S*.

The proof of Theorem 5.3.9 contains the construction of a fibration §; — S? with
associative fibres. These are zero sets of Killing vector fields. For S, US_, the fibration
can be described explicitly as follows.

Let u: (SU(2) x SU(2))/Ky x Int(I) — S? x S? be the composition of 7 with the
projection p : §% x S? x Int(I) — S? x S?. Then, u maps S, US_ to p(O,) Up(O_) and

the fibres are associative.

Proposition 5.5.3. The map u: S, US_ — p(O,)Up(O_) =2 S* U S? is a submersion
with totally geodesic T-invariant associative fibres of topology T xInt(I).

Proof. By SU(2)-equivariance, it suffices to show the statement for a single fibre in each of
O4 and O_. We restrict ourselves to the fibre over the point {(7,7)} € O, C ImH x ImH],
as the O_ case is analogous.

Note that

uw({(2,9)}) = {(lp. al. ) : p,q € (C x {0}) NSp(1),t € Int(])},

which is the fixed set of the involution (7,7,7) € U(1) x U(1) x Sp(1) acting on (SU(2) x
SU(2))/Ky x Int(I) as in Eq. (5.5.3). So u='({(4,7)}) is a connected component of the

fixed set of (7,4,4), which is therefore totally geodesic and associative. O

We now consider the singular orbit SU(2) x SU(2)/K. If K = ASU(2) or K =
{1} x SU(2), then SU(2) x SU(2)/K is an associative submanifold because it is either S,
or S3US,. For K = K, ,,, the singular orbit, SU(2) x SU(2)/K,,», is diffeomorphic to

S3 % S? and it admits a submersion onto S?:
F:(SU(2) x SU(2))/Kpmn — S* [(p,q)] — qig,

with fibres that are T*-invariant associative submanifolds, of topology the lens space:

L(m;—n,n).
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In order to prove the previous claim, we observe that, by SU(2)-equivariance, it is
enough to show that F~'({i}) = {[p,q] : ¢ € C} has the desired properties. By inspec-
tion, it is straightforward to deduce that it is T?invariant and of the given topology.
Associativity of F~1({i}) follows because it is a connected component of the set with
2-dimensional stabilizer with respect to the action of Remark 5.5.2. Moreover, there are
two additional T?-invariant associative submanifolds in SU(2) x SU(2)/K,..: the two
components of Sy described in the stratification discussion of Section 5.5.2.1, which have
topology L(n;m,—m).

Finally, note that for all possible K, the associative submanifolds of Proposition 5.5.3

extend smoothly to associatives of topology S! x R? because of Theorem 5.3.11.

5.5.2.4 Associatives in the principal set
On the principal set
My = ((SU(2) x SU(2)) x Int(1)) \ (S US.),

we are able to give an an explicit parametrization of the GSY®)-bundle described in Sec-
tion 5.3.2.

Consider the maps:
U: SO(3) x (0,7) = S*x S, (9,0) — (g1, (g1 cosd — gysin0))

where g1, go and g3 are the column vectors of ¢, and:

A:S? % S2\ (p(O4 UO)) = SO0(3),  (v,w) s ((v Snlle sml(e)” x w)) ,

—(cosOv — w), —

where 6 € (0,7) is defined by (v, w)rs = cosf. The map (A,0) is the inverse of ¥, and
VU is a diffeomorphism that is equivariant with respect to the action of SO(3) on both
spaces, where SO(3) acts on SO(3) x (0,7) by left multiplication on the SO(3) factor.
The singular orbits O, and O_ are the images of {0} x SO(3) and {7} x SO(3) if ¥ is
extended to SO(3) x [0, 7].

By taking the identity on the component Int(7) we get the equivariant diffeomorphism,
which we also denote by W:

WU: SO(3) x (0,7) x Int(I) = Mp/T? = (S? x S*\ (p(O1) Up(O-))) x Int(I).

This means that the base space of the GSU®)-bundle described in Section 5.3.2 is diffeo-
morphic to B = (0,7) x Int(I) and V¥ is a global trivialization of Mp/T* — B. With

respect to this trivialization, we have:

| = 4absinf, v = —4(b— ¢;)cosf.
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In order to apply the machinery of Section 5.3.3, we need the following lemma. In our

case, we will have o = (||, ), u = 4ab and v = +£4(b — ¢1), depending on its sign.

Lemma 5.5.4. Let u,v be two functions from an interval, Int(I), to RT. If 4,0 are
both positive or both negative everywhere, then, «(6,t) = (u(t)sin(f),v(t)cos(0)) is a
diffeomorphism from (0,7) x Int(I) onto its image in R x RT. Moreover, if v_ is the
infimum of v over I. Then, (u(t) cos(6))*(c) is connected if ¢ > u_ and has two connected
components otherwise. In particular, the map « is a diffeomorphism onto its image and

the 1mage is convex if and only if u_ = 0.

Proof. The determinant of the Jacobian vanishes if and only if 1w sin?(0) + cos?(0)uv = 0,
which never happens because v and vu have the same sign. So, « is a local diffeomor-
phism and it remains to show that it is injective. For a fixed value, ?¢, of ¢ the function
a(f,ty) traces out a half ellipse centred at the origin with semi-axes u(to),v(tg). If 1 is
another fixed value for ¢, then the ellipses a(0, to) and a(0, t,) intersect if u(ty) —u(t;) and
v(tg) — v(t1) have different signs. But this is impossible because % and © have the same
sign. Denote by u4 the supremum and the infimum of u, and by vy the supremum and
infimum of v. The image of « is the half ellipse with semi-axes (u, v, ) minus the smaller

ellipse with semi-axes (u_,v_) (see Fig. 5.5), which implies the last statement. O

In particular, if the infimum of ab is zero, we get a global fibration in the sense of
Definition 3.1.5 by Corollary 5.3.10. Note that this is always the case, when the Go-
structure defined by Foscolo-Haskins-Nordstrom extend to the singular orbit SU(2) x
SU(2)/K (cfr. Section 2.2.5.3).

On the other hand, if the infimum of @b is not zero, we can still describe the T2-invariant
associatives splitting B = (0,7) x Int(I) into (0,7/2) x Int(I) and (7/2,7) x Int(I).

We summarize everything in the following theorem.
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Theorem 5.5.5 (Aslan-T. [6]; T?-invariant associatives in FHN manifolds). Consider the
stratification, as given in Section 5.1.1, of the FHN manifolds into MpUS; US, US3U S,
with respect to the T? x SU(2)-action.

We first consider the subset ((SU(2) x SU(2))/Ky) x Int(I), which does not intersect
S,,S5,S4. Then, each strata decomposes into T?-invariant associatives in the following

way:

o Mp is fibred by T?-invariant associatives which are horizontal lifts of level sets of
|| = 4absin 6 in B = (0, ) xInt(I), where 0 is determined by cos § = (v, w) and v, w
are images of the Hopf maps: (v = qpipq, w = qiq) € S? x S%. The topology of these
associatives is T? xR. If the Go-structure extends smoothly to (SU(2) x SU(2))/K,
these associatives do not intersect (SU(2) x SU(2))/K.

e Asin Proposition 5.5.3, S admits a submersion over S?US? with totally geodesic T?-
invariant associative fibres of topology T? xR. If the Go-structure extends smoothly
to (SU(2) x SU(2))/ K, these associatives extend smoothly to associatives of topology
St x R? in M.

When the Go-structure extends to SU(2) x SU(2)/K, we distinguish two cases:

o If K =ASU(2) or K = Idsy() x SU(2), then, SU(2) x SU(2)/K is a T*-invariant
associative of topology S® as it is Sy or S3 U Sy.

o If K = K, the set consists of Sy and Sy. There exists a submersion over S? with
T?-invariant associative fibres of topology L(n : m,—n). Moreover, there are two

additional T?-invariant associatives corresponding to the two connected components

Of 82.

5.5.2.5 T3-invariant coassociatives

Let T? be the torus generated by Vi, Uy, Us. It is straightforward to see that the singular
set of this action, S, restricted to ((SU(2) x SU(2))/Ko) x Int([I) is:

Sp={(p.al:t) € (SU(2) x SU(2)/Ko) x Int(I) : p,q € (C x {0} U {0} x C) C Sp(1)},

which is contained in C S; US_. On Sp the stabilizer is 1-dimensional and it is mapped,
via g2 to {(=£i, i, 1), (£i, i, 1)}

On SU(2) x SU(2)/K, with K = ASU(2) or K = {1} x SU(2), the stabilizer is
everywhere 1-dimensional apart from the intersection of SU(2) x SU(2)/K with the closure
of Sp, where the stabilizer is 2-dimensional. If K = K,,,, the stabilizer at [(p,q)] €
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(SU(2) x SU(2))/ K is 2-dimensional if p and ¢ are in C x {0} U {0} x C, it is 1-
dimensional if p or ¢ is in C x {0} U {0} x C and it is O-dimensional otherwise.

By Proposition 5.4.3, the T*-invariant coassociatives, in M \ S, are the level sets of
the map (67, 0%,v):

([p, al,t) = (2av1 — 2(a — b)(v, w)rswr, —=2(b + c2)wi, —4(b — c1) (v, w)rs) ,

where v, w are as above.

We now characterize the T*-invariant coassociatives intersecting the 1-dimensional and
the 2-dimensional stabilizer.

Given ([p, q|,t0) € Sp, it is mapped via (61,02, v) to (e12b(to), €22(b(to)+c2), e34(b(tg) —
1)), where ¢; € {0, 1} take one of four possibilities for which ;e3¢5 = 1, depending whether
p and ¢ are in C x {0} or {0} x C. We now turn our attention to SU(2) x SU(2)/K.

Case 1 (K = ASU(2)). If K = ASU(2), a T-invariant coassociative intersects the
set with 1-dimensional stabilizer in SU(2) x SU(2)/K, if and only if it is the preimage of
(2,0,0) for z € (—2cy,2¢y). It intersects the set with 2-dimensional stabilizer, and hence
singular by Theorem 5.4.5, if and only if x = +2¢;.

Case 2 (K = {lsyw)} x SU(2)). In this case, the T*-invariant coassociatives cor-
responding to the preimages of (0,0,z), for € [—4c,4c¢;], are the ones intersecting
SU(2) x SU(2)/K. Among them, the one intersecting the set with 2-dimensional stabi-
lizer are the preimages of (0,0, +4c;).

Case 3 (K = K,,,). When K = K,,,, the coassociatives intersecting the set with
O-dimensional stabilizer in SU(2) x SU(2)/K are the the level sets of points in:

{@mnrizy, —2n(m + n)rjy, —4m(m + n)rijz) : z,y € (=1,1) };
they intersect the set with 1-dimensional stabilizer they are the level set of points in:
{@mnrizy, —2n(m + n)rjy, —4m(m + n)rjz) : x = +1,y € (-1,1) or y = £1,z € (=1,1)};
and they are singular if they are the preimage of:
(£2mnrd, —2n(m + n)ry, Fadm(m + n)re®) or (£2mnry, +2n(m + n)ry, dm(m + n)re®).

In particular, from this discussion one could characterize the T?-invariant coassocia-
tives of different topology (see Section 5.5.3.4 for an explicit example). Note that, the
only topological possibilities are the T? xR, T? xR? and the singular ones T? xR x R*.
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5.5.2.6 SU(2)-invariant coassociatives

Finally, we study SU(2)-invariant coassociatives. Similarly to Section 5.5.2.2, we can
compute p(Vi, Vo, V3) = ¢o. Hence, there are SU(2)-invariant coassociatives if and only if

co = 0. If this is the case, the coassociative submanifolds are of the form:
{([po. q],t) € ((SU(2) x SU(2))/Ko) x Int(I) : ¢ € SU(2),t € Int(])},

for every fixed py € SU(2). As we assumed c; = 0, the only possibility to extend the
Go-structure to SU(2) x SU(2)/K is for K equal to {1} x SU(2). In this situation, the

resulting SU(2)-invariant coassociatives extend to smooth R?s.

5.5.3 Bryant—Salamon manifold

As an explicit special case of Section 5.5.2, we consider the Bryant—Salamon manifolds
of topology S? x R* = {(x,a) € H? : ||z|| = 1}. Up to an element of the automorphism

group, we can restrict ourselves to the following actions:
L (A1, A2,7)(, ) = (M2, Aea¥),
2. (A1, A0, 7)(2, 0) = (Mads, vads),
3. (A1, A2, 7)(,0) = (yahg, Aiads),

where (A, Ag,77) € U(1) x U(1) x Sp(1) and the U(1)s are generated by quaternionic
multiplication by i. Note that Case (1) can be reconducted to the discussion in Sec-
tion 5.5.2, picking K = ASU(2) and up to a change of variables, while Case (2) and Case
(3) picking K = {1} x SU(2). However, to be more explicit, we fix the description of the
Bryant—Salamon manifold as in Eq. (2.2.9) and we adjust the arguments of Section 5.5.2

accordingly.

5.5.3.1 The stratification

We first notice that the principal stabilizer is generated by (—1, —1) € T? x SU(2) for all
cases, hence G5V = S0(3).
The stratification for Case (1) is:

Mp = (S*xH)\ S, 8 ={(x,a) €S> xH" :7TaecCx{0}U{0}xC},
Sy = {(I,O) € HQ}, S; = Q), S, = @,
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for Case (2) it is:

Mp = (S* x H)\ 81, i = {(r,a) € H2: & € U(1) x {0} U{0} x U(1)},
82:®7 83:{(.T,0) €H2}\81, 84:{(LE,0) €H2}ﬂ81,

finally, for Case (3) it is:

Mp = (S* x H\ ), S ={(z,a) € H:a e U(1) x {0} U{0} x U(1)},
Sy = {(.17,0) € HQ} S3=86,= 0.

5.5.3.2 The multi-moment maps

Before computing the multi-moment maps, we write the explicit form of the projection
to the T?-quotient: 2. In S x H*, these take the form:

w2 S xS x RT — S x S2xRY (p,q,7) — (v,w,7),

where, for Case (1) v = pip,w = Giq, for Case (2) v = gpipq,w = qiq and, for Case (3),

v = pip, w = pgigp. The multi-moment maps, which pass to the T?-quotients, are:

Case (1) Case (2) Case (3)
v 2v/3r% (v, w)gs — Y3 (3c 4 4r2) (v, w)gs —2v/3r% (v, w)gs
0 | (3¢ +4r) V3ry V3 (3¢ + 4r2)v
0> | —/3r%w —V/3r%w —V/3r?%w
03 | =3r%(c+ 1?3 xps w —3r2(c+ r?)Y3y xps w 3r2(c+r?)3y xps w

5.5.3.3 T’-invariant associatives

The description of the T*invariant associatives follows exactly as in the FHN manifolds.

For instance, we obtain the following result for Case (1).

Theorem 5.5.6 (Aslan-T. [6]; T*-invariant associatives in Bryant-Salamon manifolds).
Consider the stratification, as given in Section 5.1.1, of the Bryant—Salamon space into
Mp U8 US, US;US, with respect to the T? x SU(2)-action of Case (1). Then, each

strata decomposes into T?-invariant associatives in the following way:

o Mp is fibred by T?-invariant associatives which are horizontal lifts of level sets of
\u| = 3r2(c+12)3sin6 in B = (0,7) x R*, where 0 is determined by cosf = (v, w)
and v, w are images of the Hopf maps: (v = pip,w = qiq) € S* x S?. The topology

of these associatives is T? xR and they do not intersect the zero section.
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e S admits a fibration over S*US? with totally geodesic T?-invariant associative fibres

of topology T? xR. These associatives extend smoothly to associatives of topology
St xR? in M.

e S is the zero section, which is an associative totally geodesic group orbit of topology
S3.

® 83234:(2).

Remark 5.5.7. The associatives of topology S' x R? were independently constructed by

Fowdar in [33]|. The author also constructed a similar family in the BGGG manifolds.

5.5.3.4 T3-invariant coassociatives

Up to an element of the autormorphism group, we can choose, for all the three cases, the

torus T? acting on (z,a) € S x R?* as follows:
(/\1, /\2, /\3)(.’17, a) — ()\1.’175\3, )\2(15\3),

where all the \;s are generated by multiplication by .
It is straightforward to see that the singular set of this action, S, is given by the zero

section and the following subset:
Sp={(z,a) € S xH:z,a€ (Cx{0}u{0} xC)cCxC},
In the singular set, the stabilizer is everywhere 1-dimensional apart from the points in:
{(z,00€ S*xH:2 € (Cx{0}u{0} xC)cCxC},

where the stabilizer is 2-dimensional.
By Proposition 5.4.3, the T®-invariant coassociatives are given by the level sets of the

map (01, 0%, v), which is explicitly given by:
V3 2 2 2
(p,q,7) — 7(30—1-47‘ Yor, —V/3rwy, 2V/3r (v, w)gs |

where v,w € S? C R? are defined accordingly to (1). By Theorem 5.4.5, the T*-
invariant coassociatives are smooth topological T® xR, apart from the ones intersect-
ing the points with one or 2-dimensional stabilizer, which are smooth T? xR2s and
T? xR x R* cones, respectively. The intersection with the 2-dimensional stabilizer oc-

curs only to the preimages of {(+ %c, 0,0)}. The T*-invariant coassociatives intersecting
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Figure 5.6: Blue: The level sets of |u| = 3r2(c+72)/3sinf in B = (0, 7) x R*. Every level
set represents an SU(2)-family of T?-invariant associatives in Mp. Orange: The level sets
of v = 2v/3r% cos . Every level set represents an S? family of T*-invariant coassociatives
in Mp. The vertical line represents the ones intersecting the zero section, two of these
T3-invariant coassociatives are singular.

the 1-dimensional stabilizer are the ones corresponding to the fibres of the following set:
{(2,0,0): x € (—37‘/‘3’0, 37‘/‘3"3)} U A, where A is:

{(:I: (3\i§c+a> ,—a,:|:2a> ta € R+} U { (i <3\Z§C -|—a> ,-I—a,:FQa) ta € R+}

5.5.3.5 SU(2)-invariant coassociatives

One can compute p.(Vi, Vs, V3) for Case (1), Case (2) and (3). This vanishes only when
¢ = 0 in Case (1) and Case (3), while for Case (2) it is always vanishing. We deduce

that SU(2)-invariant coassociatives are given by fibres of the standard projection to S*
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(cfr. [49, Section 4]).

5.5.3.6 Another family of associative submanifolds

The associatives fibres of S; — S? in Theorem 5.5.6 are products of a plane in R* times
a geodesic in S®. In general, one can take any 2-dimensional vector subspace W C R,
spanned by the orthonormal vectors wy, ws, and observe that w; X ws is tangent to S3. For
every p € S, we can consider Yy, to be the unit length geodesic starting at p with velocity
wy X wg, and observe that vy, X W is an associative submanifold. These examples are not
only part of the family of T?-invariant associative submanifolds, but also of the following
family, where each associative contains an affine plane W := W @ x in R*. Here, W is
a 2-dimensional vector subspace of R* and z is in the Euclidean perpendicular subspace
W+. The orthogonal complement W+ carries a unique positive complex structure, so we

can define the curve contained in it:
dwz(t) = e iz,

Proposition 5.5.8. Let p be a point in S®, W = W @ x be an affine plane with x € W+.

The unique associative containing {p} x W is
N = {(wp(t), ¥, 0wa(t)) € > x W x W+ |y € W,t € R}

Proof. As the uniqueness follows immediately from the local existence and uniqueness the-
orem, we only need to prove that IV is an associative submanifold. We use the parametri-
sation of S® x R* as in Section 2.2.4.2. By applying elememts of the automorphism group
SU(2)3, we can assume without loss of generality that W = {ay = a3 = 0}. More-
over, we choose a left-invariant frame {Fy, Ey, E3} on S such that the tangent space of
N is spanned by {0,,, 0ay, €1 — (4304, — a20,,)/2} at any point of N. We conclude as
xp(e1 — (a304, — 2045)/2, Oug, Oay, ) = 0 at any point of N. O

In particular, Proposition 5.5.8 extends the description of possibly twisted calibrated
subbundles in manifolds of exceptional holonomy which was started by Karigiannis, Leung
and Min-Oo in [48,50].
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